496 research outputs found

    Formation free energy of clusters in vapor-liquid nucleation: A Monte Carlo simulation study

    Get PDF
    The formation free energy of clusters in a supersaturated vapor is obtained by a constrained Monte Carlo technique. A key feature of this approach is to set an upper limit to the size of cluster. This maximum cluster size serves essentially as an extra thermodynamic variable that constrains the system. As a result, clusters larger than the critical cluster of nucleation in the supersaturated vapor can no longer grow beyond the limiting size. Like changing the overall density of the system, changing the maximum cluster size also results in a different supersaturation and thereby a different formation free energy. However, at the same supersaturation and temperature it is found that the formation free energy has a unique value, independent of the upper limit of cluster size. The predicted size of critical cluster of nucleation is found to be consistent with the nucleation theorem as well as previous results using different simulation approaches

    Formation free energy of clusters in vapor-liquid nucleation: A Monte Carlo simulation study

    Get PDF
    The formation free energy of clusters in a supersaturated vapor is obtained by a constrained Monte Carlo technique. A key feature of this approach is to set an upper limit to the size of cluster. This maximum cluster size serves essentially as an extra thermodynamic variable that constrains the system. As a result, clusters larger than the critical cluster of nucleation in the supersaturated vapor can no longer grow beyond the limiting size. Like changing the overall density of the system, changing the maximum cluster size also results in a different supersaturation and thereby a different formation free energy. However, at the same supersaturation and temperature it is found that the formation free energy has a unique value, independent of the upper limit of cluster size. The predicted size of critical cluster of nucleation is found to be consistent with the nucleation theorem as well as previous results using different simulation approaches

    Syntheses of the Stemona alkaloids (±)-stenine, (±)- neostenine, and (±)-13-epineostenine using a stereodivergent Diels-Alder/azido-Schmidt reaction

    Get PDF
    A tandem Diels-Alder/azido-Schmidt reaction sequence provides rapid access to the core skeleton shared by several Stemona alkaloids including stenine, neostenine, tuberostemonine, and neotuberostemonine. The discovery and evolution of inter- and intramolecular variations of this process and their applications to total syntheses of (±)-stenine and (±)-neostenine are described. The stereochemical outcome of the reaction depends on both substrate type and reaction conditions, enabling the preparation of both (±)-stenine and (±)-neostenine from the same diene/dienophile combination

    Variational approach to a class of nonlinear oscillators with several limit cycles

    Full text link
    We study limit cycles of nonlinear oscillators described by the equation x¨+νF(x˙)+x=0\ddot x + \nu F(\dot x) + x =0. Depending on the nonlinearity this equation may exhibit different number of limit cycles. We show that limit cycles correspond to relative extrema of a certain functional. Analytical results in the limits ν>0\nu ->0 and ν>\nu -> \infty are in agreement with previously known criteria. For intermediate ν\nu numerical determination of the limit cycles can be obtained.Comment: 12 pages, 3 figure

    Foreword

    Get PDF

    Search for the Rare Decays J/Psi --> Ds- e+ nu_e, J/Psi --> D- e+ nu_e, and J/Psi --> D0bar e+ e-

    Full text link
    We report on a search for the decays J/Psi --> Ds- e+ nu_e + c.c., J/Psi --> D- e+ nu_e + c.c., and J/Psi --> D0bar e+ e- + c.c. in a sample of 5.8 * 10^7 J/Psi events collected with the BESII detector at the BEPC. No excess of signal above background is observed, and 90% confidence level upper limits on the branching fractions are set: B(J/Psi --> Ds- e+ nu_e + c.c.)<4.8*10^-5, B(J/Psi --> D- e+ nu_e + c.c.) D0bar e+ e- + c.c.)<1.1*10^-5Comment: 10 pages, 4 figure

    Direct Measurements of the Branching Fractions for D0Ke+νeD^0 \to K^-e^+\nu_e and D0πe+νeD^0 \to \pi^-e^+\nu_e and Determinations of the Form Factors f+K(0)f_{+}^{K}(0) and f+π(0)f^{\pi}_{+}(0)

    Get PDF
    The absolute branching fractions for the decays D0Ke+νeD^0 \to K^-e ^+\nu_e and D0πe+νeD^0 \to \pi^-e^+\nu_e are determined using 7584±198±3417584\pm 198 \pm 341 singly tagged Dˉ0\bar D^0 sample from the data collected around 3.773 GeV with the BES-II detector at the BEPC. In the system recoiling against the singly tagged Dˉ0\bar D^0 meson, 104.0±10.9104.0\pm 10.9 events for D0Ke+νeD^0 \to K^-e ^+\nu_e and 9.0±3.69.0 \pm 3.6 events for D0πe+νeD^0 \to \pi^-e^+\nu_e decays are observed. Those yield the absolute branching fractions to be BF(D0Ke+νe)=(3.82±0.40±0.27)BF(D^0 \to K^-e^+\nu_e)=(3.82 \pm 0.40\pm 0.27)% and BF(D0πe+νe)=(0.33±0.13±0.03)BF(D^0 \to \pi^-e^+\nu_e)=(0.33 \pm 0.13\pm 0.03)%. The vector form factors are determined to be f+K(0)=0.78±0.04±0.03|f^K_+(0)| = 0.78 \pm 0.04 \pm 0.03 and f+π(0)=0.73±0.14±0.06|f^{\pi}_+(0)| = 0.73 \pm 0.14 \pm 0.06. The ratio of the two form factors is measured to be f+π(0)/f+K(0)=0.93±0.19±0.07|f^{\pi}_+(0)/f^K_+(0)|= 0.93 \pm 0.19 \pm 0.07.Comment: 6 pages, 5 figure

    Aza-cibalackrot: turning on singlet fission through crystal engineering

    Get PDF
    Singlet fission is a photophysical process that provides a pathway for more efficient harvesting of solar energy in photovoltaic devices. The design of singlet fission candidates is non-trivial and requires careful optimization of two key criteria: (1) correct energetic alignment and (2) appropriate intermolecular coupling. Meanwhile, this optimization must not come at the cost of molecular stability or feasibility for device applications. Cibalackrot is a historic and stable organic dye which, although it has been suggested to have ideal energetics, does not undergo singlet fission due to large interchromophore distances, as suggested by single crystal analysis. Thus, while the energetic alignment is satisfactory, the molecule does not have the desired intermolecular coupling. Herein, we improve this characteristic through molecular engineering with the first synthesis of an aza-cibalackrot and show, using ultrafast transient spectroscopy, that singlet fission is successfully "turned on.

    Study of J/psi decays to Lambda Lambdabar and Sigma0 Sigma0bar

    Full text link
    The branching ratios and Angular distributions for J/psi decays to Lambda Lambdabar and Sigma0 Sigma0bar are measured using BESII 58 million J/psi.Comment: 11 pages, 5 figure
    corecore