127 research outputs found

    Magnetic catalysis effect in the (2+1)-dimensional Gross–Neveu model with Zeeman interaction

    Get PDF
    Magnetic catalysis of the chiral symmetry breaking and other magnetic properties of the (2+1)-dimensional Gross–Neveu model are studied taking into account the Zeeman interaction of spin-1/2 quasi-particles (electrons) with tilted (with respect to a system plane) external magnetic field B→ = B→⊄ + B→∄B⃗ = B⃗⊄ + B⃗∄\vec B\, = \,{\vec B_ \bot }\, + \,{\vec B_\parallel }. The Zeeman interaction is proportional to magnetic moment ÎŒB of electrons. For simplicity, temperature and chemical potential are equal to zero throughout the paper. We compare in the framework of the model the above mentioned phenomena both at ÎŒB = 0 and ÎŒB ≠ 0. It is shown that at ÎŒB ≠ 0 the magnetic catalysis effect is drastically changed in comparison with the ÎŒB = 0 case. Namely, at ÎŒB ≠ 0 the chiral symmetry, being spontaneously broken by B→B⃗\vec B at subcritical coupling constants, is always restored at |B→B⃗\vec B| → ∞ (even at B→∄B⃗∄\vec B_\parallel = 0). Moreover, it is proved in this case that chiral symmetry can be restored simply by tilting B→B⃗\vec B to a system plane, and in the region B⊄ → 0 the de Haas – van Alphen oscillations of the magnetization are observed. At supercritical values of coupling constant we have found two chirally non-invariant phases which respond differently on the action of B→B⃗\vec B. The first (at rather small values of |B→B⃗\vec B|) is a diamagnetic phase, in which there is an enhancement of chiral condensate, whereas the second is a paramagnetic chirally broken phase. Numerical estimates show that phase transitions described in the paper can be achieved at low enough laboratory magnetic fields

    Pion condensation in electrically neutral cold matter with finite baryon density

    Full text link
    The possibility of the pion condensation phenomenon in cold and electrically neutral dense baryonic matter is investigated in ÎČ\beta-equilibrium. For simplicity, the consideration is performed in the framework of a NJL model with two quark flavors at zero current quark mass and for rather small values of the baryon chemical potential, where the diquark condensation might be ignored. Two sets of model parameters are used. For the first one, the pion condensed phase with finite baryon density is realized. In this phase both electrons and the pion condensate take part in the neutralization of the quark electric charge. For the second set of model parameters, the pion condensation is impossible if the neutrality condition is imposed. The behaviour of meson masses vs quark chemical potential has been studied in electrically neutral matter.Comment: 7 pages; 3 figures; one reference added; to be published in Eur.Phys.J.

    After-effects of geomagnetic storms: statistical analysis and theoretical explanation

    Get PDF
    Our previous studies have shown the presence of daytime positive electron density disturb-ances during several days after the start of the recovery phase. The aim of this paper is to study after-effects of geomagnetic storms (after-storm effects), i.e. ionospher-ic effects observed on the 3–5th day after the beginning of the storm recovery phase. From numerical calcula-tions with the GSM TIP model, we have found the main mechanisms for the formation of the after-storm effects. Using Irkutsk (52° N, 104° E) and Kaliningrad (54° N, 20° E) ionosonde data, we have carried out a statistical analysis of daytime ionospheric responses to geomagnetic storms. As a result of the analysis, we obtained averaged ionospheric responses at the beginning of the storm recovery phase and for five consecutive days. The statistical analysis results received near the beginning of the recovery phase are in good agreement with the well-known ionospheric effects of geomagnetic storms obtained in previous studies. For the first time, the obtained statistics of iono-spheric responses observed on the 3–5th day after the beginning of the recovery phase allowed us to reveal the dependence of after-storm ionospheric effects on season, storm intensity, and ionosonde geomagnetic latitude. In addition, we for the first time present the interpretation of after-storm ionospheric effects from numerical simulation results

    Universal Holographic Chiral Dynamics in an External Magnetic Field

    Get PDF
    In this work we further extend the investigation of holographic gauge theories in external magnetic fields, continuing earlier work. We study the phenomenon of magnetic catalysis of mass generation in 1+3 and 1+2 dimensions, using D3/D7- and D3/D5-brane systems, respectively. We obtain the low energy effective actions of the corresponding pseudo Goldstone bosons and study their dispersion relations. The D3/D7 system exhibits the usual Gell-Mann--Oakes--Renner (GMOR) relation and a relativistic dispersion relation, while the D3/D5 system exhibits a quadratic non-relativistic dispersion relation and a modified linear GMOR relation. The low energy effective action of the D3/D5 system is related to that describing magnon excitations in a ferromagnet. We also study properties of general Dp/Dq systems in an external magnetic field and verify the universality of the magnetic catalysis of dynamical symmetry breaking.Comment: 41 pages, 11 figures, references adde

    Quark and pion condensation in a chromomagnetic background field

    Full text link
    The general features of quark and pion condensation in dense quark matter with flavor asymmetry have been considered at finite temperature in the presence of a chromomagnetic background field modelling the gluon condensate. In particular, pion condensation in the case of a constant abelian chromomagnetic field and zero temperature has been studied both analytically and numerically. Under the influence of the chromomagnetic background field the effective potential of the system is found to have a global minimum for a finite pion condensate even for small values of the effective quark coupling constant. In the strong field limit, an effective dimensional reduction has been found to take place.Comment: 17 pages, 6 figure

    Mass Generation in the Supersymmetric Nambu--Jona--Lasinio Model in an External Magnetic Field

    Get PDF
    The mass generation in the (3+1)-dimensional supersymmetric Nambu-Jona-Lasinio model in a constant magnetic field is studied. It is shown that the external magnetic field catalyzes chiral symmetry breaking.Comment: LaTeX file, 6 pages. Talk given at the International Seminar dedicated to the memory of Dmitrij Volkov "Supersymmetry and Quantum Field Theory", Kharkov, Ukraine, January 5-7, 199

    Hot Defect Superconformal Field Theory in an External Magnetic Field

    Get PDF
    In this paper we investigate the influence of an external magnetic field on a flavoured holographic gauge theory dual to the D3/D5 intersection at finite temperature. Our study shows that the external magnetic field has a freezing effect on the confinement/ deconfinement phase transition. We construct the corresponding phase diagram. We investigate some thermodynamic quantities of the theory. A study of the entropy reveals enhanced relative jump of the entropy at the "chiral" phase transition. A study of the magnetization shows that both the confined and deconfined phases exhibit diamagnetic response. The diamagnetic response in the deconfined phase has a stronger temperature dependence reflecting the temperature dependence of the conductivity. We study the meson spectrum of the theory and analyze the stability of the different phases looking at both normal and quasi-normal semi-classical excitations. For the symmetry breaking phase we analyze the corresponding pseudo-Goldstone modes and prove that they satisfy non-relativistic dispersion relation.Comment: 42 pages, 14 figure

    The Influence of an External Chromomagnetic Field on Color Superconductivity

    Get PDF
    We study the competition of quark-antiquark and diquark condensates under the influence of an external chromomagnetic field modelling the gluon condensate and in dependence on the chemical potential and temperature. As our results indicate, an external chromomagnetic field might produce remarkable qualitative changes in the picture of the color superconducting (CSC) phase formation. This concerns, in particular, the possibility of a transition to the CSC phase and diquark condensation at finite temperature.Comment: 27 pages, RevTex, 8 figures; the version accepted for the publication in PRD (few references added; new numerical results added; main conclusions are not changed

    Changes in the middle and upper atmosphere parameters during the January 2013 sudden stratospheric warming

    Get PDF
    We present the results of complex obser-vations of various parameters of the middle and upper atmosphere over Siberia in December 2012 – January 2013, during a major sudden stratospheric warming (SSW) event. We analyze variations in ozone concentration from microwave measurements, in stratosphere and lower mesosphere temperatures from lidar and satellite measurements, in the F2-layer critical frequency (foF2), in the total electron content (TEC), as well as in the ratio of concentrations of atomic oxygen to molecular nitrogen (O/N2) in the thermosphere. To interpret the observed disturbances in the upper atmosphere, the experimental measurements are compared with the results of model calculations obtained with the Global Self-consistent Model of Thermosphere—Ionosphere—Protonosphere (GSM TIP). The response of the upper atmosphere to the SSW event is shown to be a decrease in foF2 and TEC during the evolution of the warming event and a prolonged increase in O/N2, foF2, and TEC after the SSW maximum. For the first time, we observe the relation between the increase in stratospheric ozone, thermospheric O/N2, and ionospheric electron density for a fairly long time (up to 20 days) after the SSW maximum at midlatitudes

    Chiral symmetry breaking in d=3 NJL model in external gravitational and magnetic fields

    Full text link
    The phase structure of d=3d=3 Nambu-Jona-Lasinio model in curved spacetime with magnetic field is investigated in the leading order of the 1/N1/N-expansion and in linear curvature approximation (an external magnetic field is treated exactly). The possibility of the chiral symmetry breaking under the combined action of the external gravitational and magnetic fields is shown explicitly. At some circumstances the chiral symmetry may be restored due to the compensation of the magnetic field by the gravitational field.Comment: 7 pages, LaTe
    • 

    corecore