3,640 research outputs found
Tunneling through nanosystems: Combining broadening with many-particle states
We suggest a new approach for transport through finite systems based on the
Liouville equation. By working in a basis of many-particle states for the
finite system, Coulomb interactions are taken fully into account and correlated
transitions by up to two different contact states are included. This latter
extends standard rate equation models by including level-broadening effects.
The main result of the paper is a general expression for the elements of the
density matrix of the finite size system, which can be applied whenever the
eigenstates and the couplings to the leads are known. The approach works for
arbitrary bias and for temperatures above the Kondo temperature. We apply the
approach to standard models and good agreement with other methods in their
respective regime of validity is found.Comment: 9 pages, 5 figures included to tex
Gain in quantum cascade lasers and superlattices: A quantum transport theory
Gain in current-driven semiconductor heterostructure devices is calculated
within the theory of nonequilibrium Green functions. In order to treat the
nonequilibrium distribution self-consistently the full two-time structure of
the theory is employed without relying on any sort of Kadanoff-Baym Ansatz. The
results are independent of the choice of the electromagnetic field if the
variation of the self-energy is taken into account. Excellent quantitative
agreement is obtained with the experimental gain spectrum of a quantum cascade
laser. Calculations for semiconductor superlattices show that the simple 2-time
miniband transport model gives reliable results for large miniband widths at
room temperatureComment: 8 Pages, 4 Figures directly included, to appear in Physical Review
A hybrid model for chaotic front dynamics: From semiconductors to water tanks
We present a general method for studying front propagation in nonlinear
systems with a global constraint in the language of hybrid tank models. The
method is illustrated in the case of semiconductor superlattices, where the
dynamics of the electron accumulation and depletion fronts shows complex
spatio-temporal patterns, including chaos. We show that this behavior may be
elegantly explained by a tank model, for which analytical results on the
emergence of chaos are available. In particular, for the case of three tanks
the bifurcation scenario is characterized by a modified version of the
one-dimensional iterated tent-map.Comment: 4 pages, 4 figure
Current-voltage characteristic and stability in resonant-tunneling n-doped semiconductor superlattices
We review the occurrence of electric-field domains in doped superlattices
within a discrete drift model. A complete analysis of the construction and
stability of stationary field profiles having two domains is carried out. As a
consequence, we can provide a simple analytical estimation for the doping
density above which stable stable domains occur. This bound may be useful for
the design of superlattices exhibiting self-sustained current oscillations.
Furthermore we explain why stable domains occur in superlattices in contrast to
the usual Gunn diode.Comment: Tex file and 3 postscript figure
Changes in axonal excitability of primary sensory afferents with general anaesthesia in humans
Background Intraoperative monitoring of neuronal function is important in a variety of surgeries. The type of general anaesthetic used can affect the interpretation and quality of such recordings. Although the principal effects of general anaesthetics are synaptically mediated, the extent to which they affect excitability of the peripheral afferent nervous system is unclear. Methods Forty subjects were randomized in a stratified manner into two groups, anaesthetized with either propofol or sevoflurane. The threshold tracking technique (QTRAC®) was used to measure nerve excitability parameters of the sensory action potential of the median nerve before and after induction of general anaesthesia. Results Several parameters of peripheral sensory afferent nerve excitability changed after induction of general anaesthesia, which were similar for both propofol and sevoflurane. The maximum amplitude of the sensory nerve action potential decreased in both groups (propofol: 25.3%; sevoflurane: 29.5%; both P<0.01). The relative refractory period [mean (sd)] also decreased similarly in both groups [propofol: −0.6 (0.7) ms; sevoflurane: −0.3 (0.5) ms; both P<0.01]. Skin temperature at the stimulation site increased significantly in both groups [propofol: +1.2 (1.0)°C; sevoflurane: +1.7 (1.4)°C; both P<0.01]. Conclusions Small changes in excitability of primary sensory afferents after the induction of anaesthesia with propofol or sevoflurane were detected. These effects, which were non-specific and are possibly explained by changes observed in temperature, demonstrate possible anaesthetic effects on intraoperative neuromonitorin
A "Littlest Higgs" Model with Custodial SU(2) Symmetry
In this note, a ``littlest higgs'' model is presented which has an
approximate custodial SU(2) symmetry. The model is based on the coset space
. The light pseudo-goldstone bosons of the theory
include a {\it single} higgs doublet below a TeV and a set of three
triplets and an electroweak singlet in the TeV range. All of these scalars
obtain approximately custodial SU(2) preserving vacuum expectation values. This
model addresses a defect in the earlier moose
model, with the only extra complication being an extended top sector. Some of
the precision electroweak observables are computed and do not deviate
appreciably from Standard Model predictions. In an S-T oblique analysis, the
dominant non-Standard Model contributions are the extended top sector and higgs
doublet contributions. In conclusion, a wide range of higgs masses is allowed
in a large region of parameter space consistent with naturalness, where large
higgs masses requires some mild custodial SU(2) violation from the extended top
sector.Comment: 22 pages + 8 figures; JHEP style, added references and extra
discussion on size of T contributions, as well as some other minor
clarifications. Version to appear in JHE
Theory of Transmission through disordered superlattices
We derive a theory for transmission through disordered finite superlattices
in which the interface roughness scattering is treated by disorder averaging.
This procedure permits efficient calculation of the transmission thr ough
samples with large cross-sections. These calculations can be performed
utilizing either the Keldysh or the Landauer-B\"uttiker transmission
formalisms, both of which yield identical equations. For energies close to the
lowest miniband, we demonstrate the accuracy of the computationally efficient
Wannier-function approximation. Our calculations indicate that the transmission
is strongly affected by interface roughness and that information about scale
and size of the imperfections can be obtained from transmission data.Comment: 12 pages, 6 Figures included into the text. Final version with minor
changes. Accepted by Physical Review
Quantum-mechanical wavepacket transport in quantum cascade laser structures
We present a viewpoint of the transport process in quantum cascade laser
structures in which spatial transport of charge through the structure is a
property of coherent quantum-mechanical wavefunctions. In contrast, scattering
processes redistribute particles in energy and momentum but do not directly
cause spatial motion of charge.Comment: 6 pages, 5 figures included in tex, to appear in Physical Review
Center of mass and relative motion in time dependent density functional theory
It is shown that the exchange-correlation part of the action functional
in time-dependent density functional theory , where
is the time-dependent density, is invariant under the
transformation to an accelerated frame of reference , where is an arbitrary
function of time. This invariance implies that the exchange-correlation
potential in the Kohn-Sham equation transforms in the following manner:
. Some of the
approximate formulas that have been proposed for satisfy this exact
transformation property, others do not. Those which transform in the correct
manner automatically satisfy the ``harmonic potential theorem", i.e. the
separation of the center of mass motion for a system of interacting particles
in the presence of a harmonic external potential. A general method to generate
functionals which possess the correct symmetry is proposed
- …
