1,161 research outputs found
R-Mode Oscillations in Rotating Magnetic Neutron Stars
We show that r-mode oscillations distort the magnetic fields of neutron stars
and that their occurrence is likely to be limited by this interaction. If the
field is gtrsim 10^{16} (Omega/Omega_B) G, where Omega and Omega_B are the
angular velocities of the star and at which mass shedding occurs, r-mode
oscillations cannot occur. Much weaker fields will prevent gravitational
radiation from exciting r-mode oscillations or damp them on a relatively short
timescale by extracting energy from the modes faster than gravitational wave
emission can pump energy into them. For example, a 10^{10} G poloidal magnetic
field that threads the star's superconducting core is likely to prevent the
ell=2 mode from being excited unless Omega exceeds 0.35 Omega_B. If Omega is
larger than 0.35 Omega_B initially, the ell=2 mode may be excited but is likely
to decay rapidly once Omega falls below 0.35 Omega_B, which happens in lesssim
15^d if the saturation amplitude is gtrsim 0.1. The r-mode oscillations may
play an important role in determining the structure of neutron star magnetic
fields.Comment: 4 pages, 1 postscript figure, uses emulateapj; submitted to ApJ
Letters 1999 Nov 8; accepted 2000 Jan 25; this version is essentially
identical to the original version except that Figure 2 was deleted in order
to fit within the ApJ Letters page limi
Phase diagram at finite temperature and quark density in the strong coupling limit of lattice QCD for color SU(3)
We study the phase diagram of quark matter at finite temperature (T) and
finite chemical potential (mu) in the strong coupling limit of lattice QCD for
color SU(3). We derive an analytical expression of the effective free energy as
a function of T and mu, including baryon effects. The finite temperature
effects are evaluated by integrating over the temporal link variable exactly in
the Polyakov gauge with anti-periodic boundary condition for fermions. The
obtained phase diagram shows the first order phase transition at low
temperatures and the second order phase transition at high temperatures
separated by the tri-critical point in the chiral limit. Baryon has effects to
reduce the effective free energy and to extend the hadron phase to a larger mu
direction at low temperatures.Comment: 18 pages, 10 figure
Nonlinear magnetic responses at the phase boundaries around helimagnetic and skyrmion lattice phases in MnSi: Evaluation of robustness of noncollinear spin texture
The phase diagram of a cubic chiral magnet MnSi with multiple Dzyaloshinskii-Moriya (DM) vectors as a function of temperature T and dc magnetic field Hdc was investigated using intensity mapping of the odd-harmonic responses of ac magnetization (M1ω andM3ω), and the responses at phase boundaries were evaluated according to a prescription [J. Phys. Soc. Jpn. 84, 104707 (2015)]. By evaluating M3ω/M1ω appearing at phase boundaries, the robustness of noncollinear spin texture in both the helimagnetic (HM) and the skyrmion lattice (SkL) phases of MnSi was discussed. The robustness of vortices-type solitonic texture SkL in MnSi is smaller than those of both the single DM HM and chiral soliton lattice phases of a monoaxial chiral magnet Cr1/3NbS2, and furthermore the robustness of the multiple DM HM phase in MnSi is smaller than that of its SkL. Through magnetic diagnostics over the wide T -Hdc range, we found a new paramagnetic (PM) region with ac magnetic hysteresis, where spin fluctuations have been observed via electrical magnetochiral effect. The anomalies observed in the previous ultrasonic attenuation measurement correspond to the peak positions of out-of-phase M1ω. The appearance of a new PM region occurs at a characteristic magnetic field, above which indeed the SkL phase appears. It has us suppose that the new PM region could be a phase with spin fluctuation like the skyrmion gas phase
Isothermal Shock Formation in Non-Equatorial Accretion Flows around Kerr Black Holes
We explore isothermal shock formation in non-equatorial, adiabatic accretion
flows onto a rotating black hole, with possible application to some active
galactic nuclei (AGNs). The isothermal shock jump conditions as well as the
regularity condition, previously developed for one-dimensional (1D) flows in
the equatorial plane, are extended to two-dimensional (2D), non-equatorial
flows, to explore possible geometrical effects. The basic hydrodynamic
equations with these conditions are self-consistently solved in the context of
general relativity to explore the formation of stable isothermal shocks. We
find that strong shocks are formed in various locations above the equatorial
plane, especially around a rapidly-rotating black hole with the prograde flows
(rather than a Schwarzschild black hole). The retrograde flows are generally
found to develop weaker shocks. The energy dissipation across the shock in the
hot non-equatorial flows above the cooler accretion disk may offer an
attractive illuminating source for the reprocessed features, such as the iron
fluorescence lines, which are often observed in some AGNs.Comment: 22 pages with 11 figures, presented at 5th international conference
on high energy density laboratory astrophysics in Tucson, Arizona. accepted
to Ap
Crystalline-Electric-Field Effect on the Resistivity of Ce-based Heavy Fermion Systems
The behavior of the resistivity of Ce-based heavy fermion systems is studied
using a 1/-expansion method a la Nagoya, where is the spin-orbital
degeneracy of f-electrons. The 1/-expansion is performed in terms of the
auxiliary particles, and a strict requirement of the local constraints is
fulfilled for each order of 1/N. The physical quantities can be calculated over
the entire temperature range by solving the coupled Dyson equations for the
Green functions self-consistently at each temperature. This 1/N-expansion
method is known to provide asymptotically exact results for the behavior of
physical quantities in both low- and high-energy regions when it is applied to
a single orbital periodic Anderson model (PAM). On the basis of a generalized
PAM including crystalline-electric-field splitting with a single conduction
band, the pressure dependence of the resistivity is calculated by
parameterizing the effect of pressure as the variation of the hybridization
parameter between the conduction electrons and f-electrons. The main result of
the present study is that the double-peak structure of the -dependence of
the resistivity is shown to merge into a single-peak structure with increasing
pressure.Comment: 37 pages, 22 figure
Iron K-alpha Fluorescent Line Profiles from Spiral Accretion Flows in AGNs
We present 6.4 keV iron K-alpha fluorescent line profiles predicted for a
relativistic black hole accretion disk in the presence of a spiral motion in
Kerr geometry, the work extended from an earlier literature motivated by recent
magnetohydrodynamic (MHD) simulations. The velocity field of the spiral motion,
superposed on the background Keplerian flow, results in a complicated redshift
distribution in the accretion disk. An X-ray source attributed to a localized
flaring region on the black hole symmetry axis illuminates the iron in the
disk. The emissivity form becomes very steep because of the light bending
effect from the primary X-ray source to the disk. The predicted line profile is
calculated for various spiral waves, and we found, regardless of the source
height, that: (i) a multiple-peak along with a classical double-peak structure
generally appears, (ii) such a multiple-peak can be categorized into two types,
sharp sub-peaks and periodic spiky peaks, (iii) a tightly-packed spiral wave
tends to produce more spiky multiple peaks, whereas (iv) a spiral wave with a
larger amplitude seems to generate more sharp sub-peaks, (v) the effect seems
to be less significant when the spiral wave is centrally concentrated, (vi) the
line shape may show a drastic change (forming a double-peak, triple-peak or
multiple-peak feature) as the spiral wave rotates with the disk. Our results
emphasize that around a rapidly-rotating black hole an extremely redshifted
iron line profile with a noticeable spike-like feature can be realized in the
presence of the spiral wave. Future X-ray observations, from {\it Astro-E2} for
example, will have sufficient spectral resolution for testing our spiral wave
model which exhibits unique spike-like features.Comment: 30 pages, 10 figures, submitted to ApJ, will be presented at 204th
Meeting of AAS in Denve
An accretion model for the growth of the central black hole associated with ionization instability in quasars
A possible accretion model associated with the ionization instability of
quasar disks is proposed to address the growth of the central black hole
harbored in the host galaxy.The mass ratio between black hole and its host
galactic bulge is a nature consequence of our model.Comment: submitted to ApJ, 15 page
Depletion of the histone chaperone tNASP inhibits proliferation and induces apoptosis in prostate cancer PC-3 cells
<p>Abstract</p> <p>Background</p> <p>NASP (Nuclear Autoantigenic Sperm Protein) is a histone chaperone that is present in all dividing cells. NASP has two splice variants: tNASP and sNASP. Only cancer, germ, transformed, and embryonic cells have a high level of expression of the tNASP splice variant. We examined the consequences of tNASP depletion for prostate cancer PC-3 cells.</p> <p>Methods</p> <p>tNASP was depleted from prostate cancer PC-3 cells, cervical cancer HeLa cells, and prostate epithelial PWR-1E cells using lentivirus expression of tNASP shRNA. Cell cycle changes were studied by proliferation assay with CFSE labeling and double thymidine synchronization. Gene expression profiles were detected using RT<sup>2</sup>Profiler PCR Array, Western and Northern blotting.</p> <p>Results</p> <p>PC-3 and HeLa cells showed inhibited proliferation, increased levels of cyclin-dependant kinase inhibitor p21 protein and apoptosis, whereas non-tumorigenic PWR-1E cells did not. All three cell types showed decreased levels of HSPA2. Supporting in vitro experiments demonstrated that tNASP, but not sNASP is required for activation of HSPA2.</p> <p>Conclusions</p> <p>Our results demonstrate that PC-3 and HeLa cancer cells require tNASP to maintain high levels of HSPA2 activity and therefore viability, while PWR-1E cells are unaffected by tNASP depletion. These different cellular responses most likely arise from changes in the interaction between tNASP and HSPA2 and disturbed tNASP chaperoning of linker histones. This study has demonstrated that tNASP is critical for the survival of prostate cancer cells and suggests that targeting tNASP expression can lead to a new approach for prostate cancer treatment.</p
Magnetic-Field Control of Quantum Critical Points of Valence Transition
We study the mechanism how critical end points of first-order valence
transitions are controlled by a magnetic field. We show that the critical
temperature is suppressed to be a quantum critical point (QCP) by a magnetic
field and unexpectedly the QCP exhibits nonmonotonic field dependence in the
ground-state phase diagram, giving rise to emergence of metamagnetism even in
the intermediate valence-crossover regime. The driving force of the
field-induced QCP is clarified to be cooperative phenomena of Zeeman effect and
Kondo effect, which create a distinct energy scale from the Kondo temperature.
This mechanism explains peculiar magnetic response in CeIrIn5 and metamagnetic
transition in YbXCu4 for X=In as well as sharp contrast between X=Ag and Cd.Comment: 4 pages, 4 figure
- …