2,927 research outputs found

    Surface Shubnikov-de Hass oscillations and non-zero Berry phases of the topological hole conduction in Tl1x_{1-x}Bi1+x_{1+x}Se2_2

    Get PDF
    We report the observation of two-dimensional Shubnikov-de Hass (SdH) oscillations in the topological insulator Tl1x_{1-x}Bi1+x_{1+x}Se2_2. Hall effect measurements exhibited electron-hole inversion in samples with bulk insulating properties. The SdH oscillations accompanying the hole conduction yielded a large surface carrier density of ns=5.1×1012n_{\rm{s}}=5.1 \times10^{12}/cm2^2, with the Landau-level fan diagram exhibiting the π\pi Berry phase. These results showed the electron-hole reversibility around the in-gap Dirac point and the hole conduction on the surface Dirac cone without involving the bulk metallic conduction.Comment: 5 pages, 4 figure

    Precise determination of two-carrier transport properties in the topological insulator TlBiSe2_2

    Get PDF
    We report the electric transport study of the three-dimensional topological insulator TlBiSe2_2. We applied a newly developed analysis procedure and precisely determined two-carrier transport properties. Magnetotransport properties revealed a multicarrier conduction of high- and low-mobility electrons in the bulk, which was in qualitative agreement with angle-resolved photoemission results~[K. Kuroda et al.et~al., Phys. Rev. Lett. 105\bm{105}, 146801 (2010)]. The temperature dependence of the Hall mobility was explained well with the conventional Bloch-Gr{\"u}neisen formula and yielded the Debye temperature ΘD=113±14\varTheta_{\rm{D}}=113 \pm 14~K. The results indicate that the scattering of bulk electrons is dominated by acoustic phonons.Comment: 6 pages, 5 figures, to be published in Physical Review

    Analysis of Moderately Siderophile Elements in Angrites: Implications for Core Formation of the Angrite Parent Body

    Get PDF
    Angrites are an enigmatic group of achondrites, that constitute the largest group of basalts not affiliated with the Moon, Mars or Vesta (HEDs). Chemically, angrites are exceptionally refractory element- enriched (e.g., Al, Ca) and volatile element-depleted (e.g., Na and K) achondrites. Highly volatile siderophile and chalcophile elements (Zn, Ge and Se) may be less depleted than alkalis and Ga taken to imply a fractionation of plagiophile elements. Core formation on the angrite parent body (APB) is not well understood due to the dearth of moderately siderophile element (Ga, Ge, Mo, Sb, W) data for angrites, with the exception of Ni and Co [2]. In particular, there are no data for Mo abundances of angrites, while Sb and W abundances are reported for only 3 angrites, and have not always been determined on the same sample. The recent increase in angrite numbers (13) has greatly increased our knowledge of the compositional diversity of the angrite parent body (APB). In this study, we report new Co, Ni, Ga, Mo, Sb and W abundances for angrites by laser ablation inductively coupled plasma mass spectrometry (ICP-MS) in order to place constraints on core formation of the APB
    corecore