5,218 research outputs found

    Theoretical study of a localized quantum spin reversal by the sequential injection of spins in a spin quantum dot

    Full text link
    This is a theoretical study of the reversal of a localized quantum spin induced by sequential injection of spins for a spin quantum dot that has a quantum spin. The system consists of ``electrode/quantum well(QW)/dot/QW/electrode" junctions, in which the left QW has an energy level of conduction electrons with only up-spin. We consider a situation in which up-spin electrons are sequentially injected from the left electrode into the dot through the QW and an exchange interaction acts between the electrons and the localized spin. To describe the sequentially injected electrons, we propose a simple method based on approximate solutions from the time-dependent Schroš\ddot{\rm o}dinger equation. Using this method, it is shown that the spin reversal occurs when the right QW has energy levels of conduction electrons with only down-spin. In particular, the expression of the reversal time of a localized spin is derived and the upper and lower limits of the time are clearly expressed. This expression is expected to be useful for a rough estimation of the minimum relaxation time of the localized spin to achieve the reversal. We also obtain analytic expressions for the expectation value of the localized spin and the electrical current as a function of time. In addition, we found that a system with the non-magnetic right QW exhibits spin reversal or non-reversal depending on the exchange interaction.Comment: 12 pages, 12 figures, to be published in Phys. Rev. B, typos correcte

    GW approximation with self-screening correction

    Full text link
    The \emph{GW} approximation takes into account electrostatic self-interaction contained in the Hartree potential through the exchange potential. However, it has been known for a long time that the approximation contains self-screening error as evident in the case of the hydrogen atom. When applied to the hydrogen atom, the \emph{GW} approximation does not yield the exact result for the electron removal spectra because of the presence of self-screening: the hole left behind is erroneously screened by the only electron in the system which is no longer present. We present a scheme to take into account self-screening and show that the removal of self-screening is equivalent to including exchange diagrams, as far as self-screening is concerned. The scheme is tested on a model hydrogen dimer and it is shown that the scheme yields the exact result to second order in (U0−U1)/2t(U_{0}-U_{1})/2t where U0U_{0} and U1U_{1} are respectively the onsite and offsite Hubbard interaction parameters and tt the hopping parameter.Comment: 9 pages, 2 figures; Submitted to Phys. Rev.

    Segmented scintillation detectors with silicon photomultiplier readout for measuring antiproton annihilations

    Full text link
    The Atomic Spectroscopy and Collisions Using Slow Antiprotons (ASACUSA) experiment at the Antiproton Decelerator (AD) facility of CERN constructed segmented scintillators to detect and track the charged pions which emerge from antiproton annihilations in a future superconducting radiofrequency Paul trap for antiprotons. A system of 541 cast and extruded scintillator bars were arranged in 11 detector modules which provided a spatial resolution of 17 mm. Green wavelength-shifting fibers were embedded in the scintillators, and read out by silicon photomultipliers which had a sensitive area of 1 x 1 mm^2. The photoelectron yields of various scintillator configurations were measured using a negative pion beam of momentum p ~ 1 GeV/c. Various fibers and silicon photomultipliers, fiber end terminations, and couplings between the fibers and scintillators were compared. The detectors were also tested using the antiproton beam of the AD. Nonlinear effects due to the saturation of the silicon photomultiplier were seen at high annihilation rates of the antiprotons.Comment: Copyright 2014 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Review of Scientific Instruments, Vol.85, Issue 2, 2014 and may be found at http://dx.doi.org/10.1063/1.486364
    • 

    corecore