26 research outputs found

    Isolation of two distinct prion strains from a scrapie-affected sheep

    Get PDF
    We performed a transmission study using mice to clarify the characteristics of the most recent case of scrapie in Japan. The mice that were inoculated with the brain homogenate from a scrapie-affected sheep developed progressive neurological disease, and one of the scrapie-affected mice showed unique clinical signs during primary transmission. This mouse developed obesity, polydipsia, and polyuria. In contrast, the other affected mice exhibited weight loss and hypokinesia. In subsequent passages, the mice showed distinct characteristic scrapie phenotypes. This finding may prove that different prion strains coexist in a naturally affected sheep with scrapie

    High diagnostic value of second generation CSF RT-QuIC across the wide spectrum of CJD prions

    Get PDF
    Abstract An early and accurate in vivo diagnosis of rapidly progressive dementia remains challenging, despite its critical importance for the outcome of treatable forms, and the formulation of prognosis. Real-Time Quaking-Induced Conversion (RT-QuIC) is an in vitro assay that, for the first time, specifically discriminates patients with prion disease. Here, using cerebrospinal fluid (CSF) samples from 239 patients with definite or probable prion disease and 100 patients with a definite alternative diagnosis, we compared the performance of the first (PQ-CSF) and second generation (IQ-CSF) RT-QuIC assays, and investigated the diagnostic value of IQ-CSF across the broad spectrum of human prions. Our results confirm the high sensitivity of IQ-CSF for detecting human prions with a sub-optimal sensitivity for the sporadic CJD subtypes MM2C and MM2T, and a low sensitivity limited to variant CJD, Gerstmann-Sträussler-Scheinker syndrome and fatal familial insomnia. While we found no difference in specificity between PQ-CSF and IQ-CSF, the latter showed a significant improvement in sensitivity, allowing prion detection in about 80% of PQ-CSF negative CJD samples. Our results strongly support the implementation of IQ-CSF in clinical practice. By rapidly confirming or excluding CJD with high accuracy the assay is expected to improve the outcome for patients and their enrollment in therapeutic trials

    Whole blood gene expression profiling in preclinical and clinical cattle infected with atypical bovine spongiform encephalopathy

    Get PDF
    Prion diseases, such as bovine spongiform encephalopathies (BSE), are transmissible neurodegenerative disorders affecting humans and a wide variety of mammals. Variant Creutzfeldt-Jakob disease (vCJD), a prion disease in humans, has been linked to exposure to BSE prions. This classical BSE (cBSE) is now rapidly disappearing as a result of appropriate measures to control animal feeding. Besides cBSE, two atypical forms (named Hand L-type BSE) have recently been described in Europe, Japan, and North America. Here we describe the first wide-spectrum microarray analysis in whole blood of atypical BSEinfected cattle. Transcriptome changes in infected animals were analyzed prior to and after the onset of clinical signs. The microarray analysis revealed gene expression changes in blood prior to the appearance of the clinical signs and during the progression of the disease. A set of 32 differentially expressed genes was found to be in common between clinical and preclinical stages and showed a very similar expression pattern in the two phases. A 22-gene signature showed an oscillating pattern of expression, being differentially expressed in the preclinical stage and then going back to control levels in the symptomatic phase. One gene, SEL1L3, was downregulated during the progression of the disease. Most of the studies performed up to date utilized various tissues, which are not suitable for a rapid analysis of infected animals and patients. Our findings suggest the intriguing possibility to take advantage of whole blood RNA transcriptional profiling for the preclinical identification of prion infection. Further, this study highlighted several pathways, such as immune response and metabolism that may play an important role in peripheral prion pathogenesis. Finally, the gene expression changes identified in the present study may be further investigated as a fingerprint for monitoring the progression of disease and for developing targeted therapeutic interventions. \ua9 2016 Xerxa et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Transmission of Chronic Wasting Disease Identifies a Prion Strain Causing Cachexia and Heart Infection in Hamsters

    Get PDF
    Chronic wasting disease (CWD) is an emerging prion disease of free-ranging and captive cervids in North America. In this study we established a rodent model for CWD in Syrian golden hamsters that resemble key features of the disease in cervids including cachexia and infection of cardiac muscle. Following one to three serial passages of CWD from white-tailed deer into transgenic mice expressing the hamster prion protein gene, CWD was subsequently passaged into Syrian golden hamsters. In one passage line there were preclinical changes in locomotor activity and a loss of body mass prior to onset of subtle neurological symptoms around 340 days. The clinical symptoms included a prominent wasting disease, similar to cachexia, with a prolonged duration. Other features of CWD in hamsters that were similar to cervid CWD included the brain distribution of the disease-specific isoform of the prion protein, PrPSc, prion infection of the central and peripheral neuroendocrine system, and PrPSc deposition in cardiac muscle. There was also prominent PrPSc deposition in the nasal mucosa on the edge of the olfactory sensory epithelium with the lumen of the nasal airway that could have implications for CWD shedding into nasal secretions and disease transmission. Since the mechanism of wasting disease in prion diseases is unknown this hamster CWD model could provide a means to investigate the physiological basis of cachexia, which we propose is due to a prion-induced endocrinopathy. This prion disease phenotype has not been described in hamsters and we designate it as the ‘wasting’ or WST strain of hamster CWD

    Characterization of Syrian hamster adapted prions derived from L-type and C-type bovine spongiform encephalopathies

    No full text
    Atypical forms of bovine spongiform encephalopathy (BSE) may be caused by different prions from classical BSE (C-BSE). In this study, we examined the susceptibility of mice overexpressing mouse and hamster chimeric prion protein (PrP) to L-type atypical BSE (L-BSE). None of the transgenic mice showed susceptibility to L-BSE, except mice overexpressing hamster PrP. We also examined the transmission properties of L-BSE in hamsters. The incubation period of hamsters intracerebrally inoculated with L-BSE was 576.8 days, and that of the subsequent passage was decreased to 208 days. Although the lesion and glycoform profiles and relative proteinase K resistant core fragment of the abnormal isoform of PrP (PrPcore) of L-BSE were similar to that of C-BSE, the deposition of the abnormal isoform of PrP (PrPSc) and the molecular weight of PrPcore of L-BSE was different from than that of C-BSE. In hamster models, some prion strain characteristics of L-BSE were indistinguishable from those of C-BSE
    corecore