13,820 research outputs found
Non-equilibrium thermodynamics in sheared hard-sphere materials
We combine the shear-transformation-zone (STZ) theory of amorphous plasticity
with Edwards' statistical theory of granular materials to describe shear flow
in a disordered system of thermalized hard spheres. The equations of motion for
this system are developed within a statistical thermodynamic framework
analogous to that which has been used in the analysis of molecular glasses. For
hard spheres, the system volume replaces the internal energy as a
function of entropy in conventional statistical mechanics. In place of the
effective temperature, the compactivity
characterizes the internal state of disorder. We derive the STZ equations of
motion for a granular material accordingly, and predict the strain rate as a
function of the ratio of the shear stress to the pressure for different values
of a dimensionless, temperature-like variable near a jamming transition. We use
a simplified version of our theory to interpret numerical simulations by
Haxton, Schmiedeberg and Liu, and in this way are able to obtain useful
insights about internal rate factors and relations between jamming and glass
transitions.Comment: 9 pages, 6 figure
Thermodynamic dislocation theory of high-temperature deformation in aluminum and steel
The statistical-thermodynamic dislocation theory developed in previous papers
is used here in an analysis of high-temperature deformation of aluminum and
steel. Using physics-based parameters that we expect theoretically to be
independent of strain rate and temperature, we are able to fit experimental
stress-strain curves for three different strain rates and three different
temperatures for each of these two materials. Our theoretical curves include
yielding transitions at zero strain in agreement with experiment. We find that
thermal softening effects are important even at the lowest temperatures and
smallest strain rates.Comment: 7 pages, 8 figure
Localized induction equation and pseudospherical surfaces
We describe a close connection between the localized induction equation
hierarchy of integrable evolution equations on space curves, and surfaces of
constant negative Gauss curvature.Comment: 21 pages, AMSTeX file. To appear in Journal of Physics A:
Mathematical and Genera
Microstructural Shear Localization in Plastic Deformation of Amorphous Solids
The shear-transformation-zone (STZ) theory of plastic deformation predicts
that sufficiently soft, non-crystalline solids are linearly unstable against
forming periodic arrays of microstructural shear bands. A limited nonlinear
analysis indicates that this instability may be the mechanism responsible for
strain softening in both constant-stress and constant-strain-rate experiments.
The analysis presented here pertains only to one-dimensional banding patterns
in two-dimensional systems, and only to very low temperatures. It uses the
rudimentary form of the STZ theory in which there is only a single kind of zone
rather than a distribution of them with a range of transformation rates.
Nevertheless, the results are in qualitative agreement with essential features
of the available experimental data. The nonlinear theory also implies that
harder materials, which do not undergo a microstructural instability, may form
isolated shear bands in weak regions or, perhaps, at points of concentrated
stress.Comment: 32 pages, 6 figure
Shear flow of angular grains: acoustic effects and non-monotonic rate dependence of volume
Naturally-occurring granular materials often consist of angular particles
whose shape and frictional characteristics may have important implications on
macroscopic flow rheology. In this paper, we provide a theoretical account for
the peculiar phenomenon of auto-acoustic compaction -- non-monotonic variation
of shear band volume with shear rate in angular particles -- recently observed
in experiments. Our approach is based on the notion that the volume of a
granular material is determined by an effective-disorder temperature known as
the compactivity. Noise sources in a driven granular material couple its
various degrees of freedom and the environment, causing the flow of entropy
between them. The grain-scale dynamics is described by the
shear-transformation-zone (STZ) theory of granular flow, which accounts for
irreversible plastic deformation in terms of localized flow defects whose
density is governed by the state of configurational disorder. To model the
effects of grain shape and frictional characteristics, we propose an Ising-like
internal variable to account for nearest-neighbor grain interlocking and
geometric frustration, and interpret the effect of friction as an acoustic
noise strength. We show quantitative agreement between experimental
measurements and theoretical predictions, and propose additional experiments
that provide stringent tests on the new theoretical elements.Comment: 12 pages, 3 figure
A Herschel [C II] Galactic plane survey II: CO-dark H2 in clouds
ABRIDGED: Context: HI and CO large scale surveys of the Milky Way trace the
diffuse atomic clouds and the dense shielded regions of molecular hydrogen
clouds. However, until recently, we have not had spectrally resolved C+ surveys
to characterize the photon dominated interstellar medium, including, the H2 gas
without C, the CO-dark H2, in a large sample of clouds. Aims: To use a sparse
Galactic plane survey of the 1.9 THz [C II] spectral line from the Herschel
Open Time Key Programme, Galactic Observations of Terahertz C+ (GOT C+), to
characterize the H2 gas without CO in a statistically significant sample of
clouds. Methods: We identify individual clouds in the inner Galaxy by fitting
[CII] and CO isotopologue spectra along each line of sight. We combine these
with HI spectra, along with excitation models and cloud models of C+, to
determine the column densities and fractional mass of CO-dark H2 clouds.
Results: We identify 1804 narrow velocity [CII] interstellar cloud components
in different categories. About 840 are diffuse molecular clouds with no CO, 510
are transition clouds containing [CII] and 12CO, but no 13CO, and the remainder
are dense molecular clouds containing 13CO emission. The CO-dark H2 clouds are
concentrated between Galactic radii 3.5 to 7.5 kpc and the column density of
the CO-dark H2 layer varies significantly from cloud-to-cloud with an average
9X10^(20) cm-2. These clouds contain a significant fraction of CO-dark H2 mass,
varying from ~75% for diffuse molecular clouds to ~20% for dense molecular
clouds. Conclusions: We find a significant fraction of the warm molecular ISM
gas is invisible in HI and CO, but is detected in [CII]. The fraction of
CO-dark H2 is greatest in the diffuse clouds and decreases with increasing
total column density, and is lowest in the massive clouds.Comment: 21 pages, 19 figures, accepted for publication in A&A (2014
Stick-slip instabilities in sheared granular flow: the role of friction and acoustic vibrations
We propose a theory of shear flow in dense granular materials. A key
ingredient of the theory is an effective temperature that determines how the
material responds to external driving forces such as shear stresses and
vibrations. We show that, within our model, friction between grains produces
stick-slip behavior at intermediate shear rates, even if the material is
rate-strengthening at larger rates. In addition, externally generated acoustic
vibrations alter the stick-slip amplitude, or suppress stick-slip altogether,
depending on the pressure and shear rate. We construct a phase diagram that
indicates the parameter regimes for which stick-slip occurs in the presence and
absence of acoustic vibrations of a fixed amplitude and frequency. These
results connect the microscopic physics to macroscopic dynamics, and thus
produce useful information about a variety of granular phenomena including
rupture and slip along earthquake faults, the remote triggering of
instabilities, and the control of friction in material processing.Comment: 12 pages, 8 figure
Constraining the mass transfer in massive binaries through progenitor evolution models of Wolf-Rayet+O binaries
Since close WR+O binaries are the result of a strong interaction of both
stars in massive close binary systems, they can be used to constrain the highly
uncertain mass and angular momentum budget during the major mass transfer
phase. We explore the progenitor evolution of the three best suited WR+O
binaries HD 90657, HD 186943 and HD 211853, which are characterized by a WR/O
mass ratio of 0.5 and periods of 6..10 days. We are doing so at three
different levels of approximation: predicting the massive binary evolution
through simple mass loss and angular momentum loss estimates, through full
binary evolution models with parametrized mass transfer efficiency, and through
binary evolution models including rotation of both components and a physical
model which allows to compute mass and angular momentum loss from the binary
system as function of time during the mass transfer process. All three methods
give consistently the same answers. Our results show that, if these systems
formed through stable mass transfer, their initial periods were smaller than
their current ones, which implies that mass transfer has started during the
core hydrogen burning phase of the initially more massive star. Furthermore,
the mass transfer in all three cases must have been highly non-conservative,
with on average only 10% of the transferred mass being retained by the
mass receiving star. This result gives support to our system mass and angular
momentum loss model, which predicts that, in the considered systems, about 90%
of the overflowing matter is expelled by the rapid rotation of the mass
receiver close to the -limit, which is reached through the accretion of
the remaining 10%.Comment: accepted A&A version of paper with better quality plots available at
http://www.astro.uu.nl/~petrovi
- …