2,288 research outputs found

    Metallicities of M Dwarf Planet Hosts from Spectral Synthesis

    Get PDF
    We present the first spectroscopic metallicities of three M dwarfs with known or candidate planetary mass companions. We have analyzed high resolution, high signal-to-noise spectra of these stars which we obtained at McDonald Observatory. Our analysis technique is based on spectral synthesis of atomic and molecular features using recently revised cool-star model atmospheres and spectrum synthesis code. The technique has been shown to yield results consistent with the analyses of solar-type stars and allows measurements of M dwarf [M/H] values to 0.12 dex precision. From our analysis, we find [M/H] = -0.12, -0.32, and -0.33 for GJ 876, GJ 436, and GJ 581 respectively. These three M dwarf planet hosts have sub-solar metallicities, a surprising departure from the trend observed in FGK-type stars. This study is the first part of our ongoing work to determine the metallicities of the M dwarfs included in the McDonald Observatory planet search program.Comment: 13 pages, 2 figures, accepted for publication in ApJ

    Damping of giant resonances in asymmetric nuclear matter

    Get PDF
    The giant collective modes in asymmetric nuclear matter are investigated within a dynamic relaxation time approximation. We derive a coupled dispersion relation and show that two sources of coupling appear: (i) a coupling of isoscalar and isovector modes due to different mean-fields acting and (ii) an explicit new coupling in asymmetric matter due to collisional interaction. We show that the latter one is responsible for a new mode arising besides isovector and isoscalar modes.Comment: Varenna conference proceeding

    Fictive Impurity Approach to Dynamical Mean Field Theory: a Strong-Coupling Investigation

    Full text link
    Quantum Monte Carlo and semiclassical methods are used to solve two and four site cluster dynamical mean field approximations to the square lattice Hubbard model at half filling and strong coupling. The energy, spin correlation function, phase boundary and electron spectral function are computed and compared to available exact results. The comparision permits a quantitative assessment of the ability of the different methods to capture the effects of intersite spin correlations. Two real space methods and one momentum space representation are investigated. One of the two real space methods is found to be significantly worse: in it, convergence to the correct results is found to be slow and, for the spectral function, nonuniform in frequency, with unphysical midgap states appearing. Analytical arguments are presented showing that the discrepancy arises because the method does not respect the pole structure of the self energy of the insulator. Of the other two methods, the momentum space representation is found to provide the better approximation to the intersite terms in the energy but neither approximation is particularly acccurate and the convergence of the momentum space method is not uniform. A few remarks on numerical methods are made.Comment: Errors in previous versions corrected; CDMFT results adde

    A Consistency Test of Spectroscopic Gravities for Late-Type Stars

    Get PDF
    Chemical analyses of late-type stars are usually carried out following the classical recipe: LTE line formation and homogeneous, plane-parallel, flux-constant, and LTE model atmospheres. We review different results in the literature that have suggested significant inconsistencies in the spectroscopic analyses, pointing out the difficulties in deriving independent estimates of the stellar fundamental parameters and hence,detecting systematic errors. The trigonometric parallaxes measured by the HIPPARCOS mission provide accurate appraisals of the stellar surface gravity for nearby stars, which are used here to check the gravities obtained from the photospheric iron ionization balance. We find an approximate agreement for stars in the metallicity range -1 <= [Fe/H] <= 0, but the comparison shows that the differences between the spectroscopic and trigonometric gravities decrease towards lower metallicities for more metal-deficient dwarfs (-2.5 <= [Fe/H] <= -1.0), which casts a shadow upon the abundance analyses for extreme metal-poor stars that make use of the ionization equilibrium to constrain the gravity. The comparison with the strong-line gravities derived by Edvardsson (1988) and Fuhrmann (1998a) confirms that this method provides systematically larger gravities than the ionization balance. The strong-line gravities get closer to the physical ones for the stars analyzed by Fuhrmann, but they are even further away than the iron ionization gravities for the stars of lower gravities in Edvardsson's sample. The confrontation of the deviations of the iron ionization gravities in metal-poor stars reported here with departures from the excitation balance found in the literature, show that they are likely to be induced by the same physical mechanism(s).Comment: AAS LaTeX v4.0, 35 pages, 10 PostScript files; to appear in The Astrophysical Journa

    A Unified Theory for the Atmospheres of the Hot and Very Hot Jupiters: Two Classes of Irradiated Atmospheres

    Full text link
    We highlight the importance of gaseous TiO and VO opacity on the highly irradiated close-in giant planets. The atmospheres of these planets naturally fall into two classes that are somewhat analogous to the M- and L-type dwarfs. Those that are warm enough to have appreciable opacity due to TiO and VO gases we term the ``pM Class'' planets, and those that are cooler we term ``pL Class'' planets. We calculate model atmospheres for these planets, including pressure-temperature profiles, spectra, and characteristic radiative time constants. We show that pM Class planets have hot stratospheres \sim2000 K and appear ``anomalously'' bright in the mid infrared secondary eclipse, as was recently found for planets HD 149026b and HD 209458b. This class of planets absorbs incident flux and emits thermal flux from high in their atmospheres. Consequently, they will have large day/night temperature contrasts and negligible phase shifts between orbital phase and thermal emission light curves, because radiative timescales are much shorter than possible dynamical timescales. The pL Class planets absorb incident flux deeper in the atmosphere where atmospheric dynamics will more readily redistribute absorbed energy. This will lead to cooler day sides, warmer night sides, and larger phase shifts in thermal emission light curves. Around a Sun-like primary this boundary occurs at \sim0.04-0.05 AU. The eccentric transiting planets HD 147506b and HD 17156b alternate between the classes. Thermal emission in the optical from pM Class planets is significant red-ward of 400 nm, making these planets attractive targets for optical detection. The difference in the observed day/night contrast between ups Andromeda b (pM Class) and HD 189733b (pL Class) is naturally explained in this scenario. (Abridged.)Comment: Accepted to the Astrophysical Journa

    Momentum conservation and local field corrections for the response of interacting Fermi gases

    Get PDF
    We reanalyze the recently derived response function for interacting systems in relaxation time approximation respecting density, momentum and energy conservation. We find that momentum conservation leads exactly to the local field corrections for both cases respecting only density conservation and respecting density and energy conservation. This rewriting simplifies the former formulae dramatically. We discuss the small wave vector expansion and find that the response function shows a high frequency dependence of ω5\omega^{-5} which allows to fulfill higher order sum rules. The momentum conservation also resolves a puzzle about the conductivity which should only be finite in multicomponent systems
    corecore