9,565 research outputs found
Non--Heisenberg Spin Dynamics of Double-Exchange Ferromagnets with Coulomb Repulsion
With a variational three--body calculation we study the role of the interplay
between the onsite Coulomb, Hund's rule, and superexchange interactions on the
spinwave excitation spectrum of itinerant ferromagnets. We show that
correlations between a Fermi sea electron--hole pair and a magnon result in a
very pronounced zone boundary softening and strong deviations from the
Heisenberg spinwave dispersion. We show that this spin dynamics depends
sensitively on the Coulomb and exchange interactions and discuss its possible
relevance to experiments in the manganites.Comment: 4 pages, 4 figures, published in Physical Review B as rapid
communication
Ultrafast light-induced magnetization dynamics in ferromagnetic semiconductors
We develop a theory of the magnetization dynamics triggered by ultrafast
optical excitation of ferromagnetic semiconductors. We describe the effects of
the strong carrier spin relaxation on the nonlinear optical response by using
the Lindblad semigroup method. We demonstrate magnetization control during
femtosecond timescales via the interplay between circularly polarized optical
excitation, hole-spin damping, polarization dephasing, and the Mn-hole spin
interactions. Our results show a light-induced magnetization precession and
relaxation for the duration of the optical pulse.Comment: 4 pages, 2 figure
Faraday-rotation fluctuation spectroscopy with static and oscillating magnetic fields
By Faraday-rotation fluctuation spectroscopy one measures the spin noise via
Faraday-induced fluctuations of the polarization plane of a laser transmitting
the sample. In the fist part of this paper, we present a theoretical model of
recent experiments on alkali gas vapors and semiconductors, done in the
presence of a {\em static} magnetic field. In a static field, the spin noise
shows a resonance line, revealing the Larmor frequency and the spin coherence
time of the electrons. Second, we discuss the possibility to use an {\em
oscillating} magnetic field in the Faraday setup. With an oscillating field
applied, one can observe multi-photon absorption processes in the spin noise.
Furthermore an oscillating field could also help to avoid line broadening due
to structural or chemical inhomogeneities in the sample, and thereby increase
the precision of the spin-coherence time measurement.Comment: 5 pages, 7 figure
Topological insulator and the Dirac equation
We present a general description of topological insulators from the point of
view of Dirac equations. The Z_{2} index for the Dirac equation is always zero,
and thus the Dirac equation is topologically trivial. After the quadratic B
term in momentum is introduced to correct the mass term m or the band gap of
the Dirac equation, the Z_{2} index is modified as 1 for mB>0 and 0 for mB<0.
For a fixed B there exists a topological quantum phase transition from a
topologically trivial system to a non-trivial one system when the sign of mass
m changes. A series of solutions near the boundary in the modified Dirac
equation are obtained, which is characteristic of topological insulator. From
the solutions of the bound states and the Z_{2} index we establish a relation
between the Dirac equation and topological insulators.Comment: 9 pages, published versio
Contribution of Scalar Loops to the Three-Photon Decay of the Z
I corrected 3 mistakes from the first version: that were an omitted Feynman
integration in the function f^3_{ij}, a factor of 2 in front of log f^3_{ij} in
eq.2 and an overall factor of 2 in Fig.1 c). The final result is changed
drastically. Doing an expansion in the Higgs mass I show that the matrix
element is identically 0 in the order (MZ/MH)^2, which is due to gauge
invariance. Left with an amplitude of the order (MZ/MH)^4 the final result is
that the scalar contribution to this decay rate is several orders of magnitude
smaller than those of the W boson and fermions.Comment: 6 pages, plain Tex, 1 figure available under request via fax or mail,
OCIP/C-93-5, UQAM-PHE-93/0
Signatures of few-body resonances in finite volume
We study systems of bosons and fermions in finite periodic boxes and show how
the existence and properties of few-body resonances can be extracted from
studying the volume dependence of the calculated energy spectra. Using a
plane-wave-based discrete variable representation to conveniently implement
periodic boundary conditions, we establish that avoided level crossings occur
in the spectra of up to four particles and can be linked to the existence of
multi-body resonances. To benchmark our method we use two-body calculations,
where resonance properties can be determined with other methods, as well as a
three-boson model interaction known to generate a three-boson resonance state.
Finding good agreement for these cases, we then predict three-body and
four-body resonances for models using a shifted Gaussian potential. Our results
establish few-body finite-volume calculations as a new tool to study few-body
resonances. In particular, the approach can be used to study few-neutron
systems, where such states have been conjectured to exist.Comment: 13 pages, 10 figures, 2 tables, published versio
The relation of phase noise and luminance contrast to overt attention in complex visual stimuli
Models of attention are typically based on difference maps in low-level features but neglect higher order stimulus structure. To what extent does higher order statistics affect human attention in natural stimuli? We recorded eye movements while observers viewed unmodified and modified images of natural scenes. Modifications included contrast modulations (resulting in changes to first- and second-order statistics), as well as the addition of noise to the Fourier phase (resulting in changes to higher order statistics). We have the following findings: (1) Subjects' interpretation of a stimulus as a “natural” depiction of an outdoor scene depends on higher order statistics in a highly nonlinear, categorical fashion. (2) Confirming previous findings, contrast is elevated at fixated locations for a variety of stimulus categories. In addition, we find that the size of this elevation depends on higher order statistics and reduces with increasing phase noise. (3) Global modulations of contrast bias eye position toward high contrasts, consistent with a linear effect of contrast on fixation probability. This bias is independent of phase noise. (4) Small patches of locally decreased contrast repel eye position less than large patches of the same aggregate area, irrespective of phase noise. Our findings provide evidence that deviations from surrounding statistics, rather than contrast per se, underlie the well-established relation of contrast to fixation
- …