104 research outputs found

    Hot ductility of austenitic and duplex stainless steels under hot rolling conditions

    No full text
    Abstract The effects of restoration and certain elements, nitrogen, sulphur, calcium and Misch metal, on the hot ductility of austenitic, high-alloyed austenitic and duplex stainless steels have been investigated by means of hot rolling, hot tensile, hot bending and stress relaxation tests. The results of these different testing methods indicated that hot rolling experiments using stepped specimens is the most effective way to investigate the relationship between the softening and cracking phenomena under hot rolling conditions. For as-cast, high-alloyed and duplex stainless steels with a low impurity level, the cracking tendency was observed to increase with increasing pass strain and temperature, being minimal for the small strain of 0.1. No cracking occurred in these steels when rolled in the wrought condition. It could be concluded that the cracking problems are only exhibited by the cast structure with the hot ductility of even partially recrystallised steel being perfectly adequate. However, the recrystallisation kinetics of the high-alloyed austenitic stainless steels, determined by stress relaxation and double-pass rolling tests, were found to be so slow that only partial softening can be expected to occur between roughing passes under normal rolling conditions. In the duplex steel, the restoration is fairly fast so that complete softening can occur within typical interpass times in hot rolling, while certain changes in the phase structure take place as well. Sulphur was found to be an extremely harmful element in duplex stainless steel with regard to their hot ductility so that severe cracking can take place with sulphur content above 30 ppm. However, the effect of sulphur can be eliminated by reducing its content and by calcium or Misch metal treatments that significantly increase the number and decrease the average size of the inclusions. It seems that the desulphurisation capacity of an element is the most important property for assessing its usefulness in reducing the detrimental influence of sulphur. The hot ductility of type 316L stainless steel determined by tensile tests was found to be better for nitrogen content of 0.05 wt-% than 0.02%, while in double-hit tensile tests the hot ductility values were identical. The mechanism whereby nitrogen affects hot ductility remains unclear but a retarding effect on static recrystallisation was observed

    A study on grain growth using a novel grain size calculation tool

    No full text
    Abstract The growth of prior austenite grains (PAG) of low alloyed martensitic steel is proven to be one of the key attributes contributing to the mechanical properties of ultrahigh-strength steels. The mean linear intercept -method (MLI) is traditionally used to acquire average PAG sizes from light optical microscopy images, which are from experimental test samples. The MLI -method is arduous and time-consuming as well as a highly generalizing method, where you lose information about the grain size distribution. Therefore, a more sophisticated and computerised method is in high demand among metallurgists. A program has been developed that encompasses an importing, digitalizing and calculating tool, which provides grain sizes and their distribution from multiple images. The tool mimics the workflow of manual MLI -method so the user sets the measure lines and marks all the linear intercepts. After this the tool calculates the MLI grain sizes and their 95 % confidence limits. Additionally, the tool provides the size of each intercepted grain and combines them to create a distribution. This information has been used to study the effects of holding temperature and time on grain sizes throughout the test samples in a case where abnormal grain growth at the centreline was expected. In the present study, PAG sizes were studied before and after deformation at ¼ and ½ thicknesses at various temperatures and holding times using the grain size calculation tool. The average MLI grain sizes show very little differences between temperatures and holding times, so information about grain size distribution is needed. Traditional presentation of the grain size distributions also shows too much variation to interpret the data properly. Instead, using the grain size distribution information and grouping grains to small, medium and large instances gives more profound data, especially in cases where grain size variation is significantly large. Distribution data from the test series also showed abnormal grain growth at the centreline of the test sample. The grain size calculation tool is used to quantify the effect of temperature and hold time on abnormal grain growth and its root cause is examined briefly

    Flow stress characteristics and design of innovative 3-steps multiphase control thermomechanical processing to produce ultrafine grained bulk steels

    No full text
    Abstract In the present study, at first flow behavior of Nb–Ti microalloyed and interstitial-free (IF) steels was investigated to know the effects of processing parameters on their microstructural evolution. Then, innovative 3-steps multiphase control rolling schedules have been designed to yield submicron size uniform grains structure and successfully achieved ultrafine ferrite+martensite (0.69–0.78 μm) and ferritic structure (0.83–0.88 μm), respectively, in microalloyed and IF steels. The good combination of yield strength and ductility was achieved for the microalloyed (924 MPa, 13.6% elongation) and IF steel (621 MPa, 19.4% elongation) after rolling as per the designed 3-steps multiphase control deformation schedules. Deformation induced ferrite transformation followed by continuous dynamic recrystallization of the dynamically transformed ferrite is found to be the key mechanism for the formation of the ultrafine grained structure. Due to application of high amount of strains specifically within α+γ phase regime, the α-phase subdivided into several subgrains. These α-subgrains are strongly pinned by the γ/α grain boundaries and thereby restrict the dynamic recovery of the ferrite through reknitting and unravelling subgrain boundaries. On the application of further straining, the misorientation angle between these subgrain boundaries increases continuously through accumulation of the dislocations and finally, ultrafine ferrite grain structure is developed through continuous dynamic recrystallization

    Insight to the influence of Ti addition on the strain-induced martensitic transformation in a high (about 7 wt.%) Mn stainless steel

    No full text
    Tiivistelmä The kinetics of strain-induced martensite (SIM) formation in a Ti-bearing 201L stainless steel were evaluated and compared to the existing results of two conventional stainless steel grades; i.e., 201L and 304L AISI. The effects of strain rate and rolling pass reduction on the kinetics of SIM formation during cold rolling were investigated. The Ti-microalloying was found to be intensifying the transformation due to lowering the stacking fault energy. It was seen that decreasing the rolling pass reduction strongly affected the variation of SIM volume fraction. Furthermore, a close correlation between the hardness and strain-induced transformation was found arising from microstructural evolution during the cold rolling process. Three stages in the hardening behavior were detected associated with lath-type martensite formation, transition stage of martensite laths break up and formation of dislocation-cell-type martensite

    On the role of grain size and carbon content on the sensitization and desensitization behavior of 301 austenitic stainless steel

    No full text
    Abstract The effect of grain size in the range 72 to 190 μm and carbon content in the range 0.105–0.073 wt.% on the intergranular corrosion of the austenitic stainless steel 301 has been investigated. Grain boundary chromium depletion has been studied directly using energy dispersive X-ray spectroscopy combined with scanning transmission electron microscopy and indirectly using double loop electrochemical potentiokinetic reactivation tests. In addition, chromium depletion has been modelled using the CALPHAD Thermo-Calc software TC-DICTRA. It is shown that the degree of sensitization measured using the double loop electrochemical potentiokinetic reactivation tests can be successfully predicted with the aid of a depletion parameter based on the modelled chromium depletion profiles for heat treatment times covering both the sensitization and de-sensitization or self-healing. Additionally, along with intergranular M23C6 carbides, intragranular M23C6 and Cr2N nitrides that affect the available Cr for grain boundary carbide precipitation were also observed

    Simulation-driven development of combustion engines:theory and examples

    No full text
    Abstract This paper describes the simulation-driven design process used in engines technology. The research question is “how to use research in the structural analysis and dynamics field to ensure world-class product development?” This paper describes research on simulation methodologies from the design process perspective, demonstrating the need for research in various steps of product development. Each section of the paper includes one or two practical examples in which research was needed to increase product design quality. In the product definition section, the Digital Design Platform (DDP) shows the coupling between product requirements and simulation tasks. At the concept design stage, it is shown that computational methods can optimize the placement of material in the case of the main bearing cap topology. The second example is JuliaFEM, an open-source finite element method (FEM) platform, which is suitable for heavy-duty method development, where the internals of the FE solver is needed to make new calculation methodologies available. The next section is about detailed design, where an example of an oil sump welds fatigue illustrates the continuous improvement of the simulation methodology. The second example is connecting rod fretting calculation, which illustrates the full complexity of the structural analysis and dynamics simulations. The second last process step is the virtual validation, where first the cylinder head simulation methodology shows the internal connections between different disciplines’ simulations. Another example here is the crankshaft virtual validation process, which describes the complexity of the “simple” component calculation as well as illustrates the number of needed competencies. Finally, in the validation process step, Big Data analyses describe the internals and complexity of the methodologies. Lastly, counterweight measurement device development illustrates that validation of the simulation models and methods sometimes leads toward a measurement device development project. As a conclusion, all the previous methodologies are used to build the Wärtsilä 31 engine, which is the most efficient four-stroke engine in the world. It is, of course, a performance achievement, but a lot of research in simulation methodologies, as explained, was needed to make a reliable product with such a high cylinder peak pressure

    Sensitization and self-healing in austenitic stainless steel:quantitative prediction considering carbide nucleation and growth

    No full text
    Abstract Abstract The degree of sensitization in an austenitic stainless steel, has been measured using double loop electrochemical reactivation tests, and the measured values compared with predictions based on grain boundary chromium depletion characteristics obtained using the precipitation and diffusion modules of Thermo-Calc. In order to quantitatively predict Cr depletion, the precipitation of M23C6 carbides that are responsible for sensitization has been modelled for isothermal conditions by treating nucleation and growth separately. Based on a critical chromium concentration, a depletion parameter that predicts both sensitization and self-healing is given

    Study of intergranular corrosion in austenitic stainless steels using electrochemical impedance spectroscopy

    No full text
    Abstract Electrochemical impedance spectroscopy (EIS) has been used to detect sensitization in austenitic stainless steels that are heat treated in the temperature regime 600–820 °C to produce different degrees of sensitization in the material. The tests were conducted at five different DC potentials in the transpassive region. The quantitative determination of degree of sensitization has been done using double loop electrochemical potentiokinetic reactivation tests (DL-EPR). The correlation between EIS Nyquist diagrams and DL-EPR degree of sensitization values has been studied. The EIS technique can be used as a qualitative tool in determining the intergranular corrosion in austenitic stainless steels that are heat treated at a given temperature

    Microstructure evolution and static recrystallization kinetics in hot-deformed austenite of coarse-grained Mo-free and Mo containing low-carbon CrNiMnB ultrahigh-strength steels

    No full text
    Abstract The static recrystallization characteristics and microstructure evolution in hot-deformed austenite were evaluated for a newly developed low-carbon CrNiMnB ultrahigh-strength steel with and without molybdenum addition. The time for 50% static recrystallization (t50%) over a wide range of strains and hot-deformation temperatures were obtained using the stress-relaxation technique on Gleeble thermomechanical simulator. Moreover, effect of deformation parameters on the size distribution and average size of prior austenite grains are investigated. A novel semi-automatic stress relaxation test reading tool with a graphical user interface was created and used successfully for the current study. The obtained results of strain‘s power and the apparent activation energy are within the range stated in literature for C-Mn and microalloyed steels. Addition of molybdenum increase the power of strain and the apparent activation energy from − 1.9 to − 2.6 and 206 to 212 kJ/mol, respectively. The retardation effect of molybdenum addition was shown by a new regression equation devised for calculating t50%. The developed equations show a good agreement with the experimental data and can be used in the designing of roughing during thermomechanical processing. The deformation parameters i.e., temperature, strain and holding time have a significant effect on the size distribution and average size of prior austenite grains

    Evaluation of mechanical properties and microstructures of molybdenum and niobium microalloyed thermomechanically rolled high-strength press hardening steel

    No full text
    Abstract This article studied the effect of molybdenum and niobium on the microstructures and mechanical properties of laboratory control rolled steels based on grade 22MnB5. The constructed continuous cooling transformation diagrams revealed that an addition of Mo significantly increased the hardenability. Especially in the case of austenite compressed below its recrystallization temperature, an Mo addition delayed ferrite and bainite formation, and it increased martensite hardness. Laboratory hot-rolling experiments with a finish rolling temperature of 850°C produced a flattened pancaked austenite. After hot rolling and direct quenching, samples were rapidly re-austenitized at 900°C followed by water quenching to simulate an actual press hardening process. Especially in the case of Nb-Mo steel, a strongly pancaked austenitic structure was achieved after hot rolling, which led to a fine, uniform prior austenite grain structure after re-austenitization and quenching. The Nb-Mo steel had a tensile strength >1500 MPa and ~ 11% total elongation combined with good impact toughness, which can be considered excellent for this type of press hardening steel
    corecore