143 research outputs found

    B-flavor tagging at Belle II

    Get PDF
    We report on new flavor tagging algorithms developed to determine the quark-flavor content of bottom ( ) mesons at Belle II. The algorithms provide essential inputs for measurements of quark-flavor mixing and charge-parity violation. We validate and evaluate the performance of the algorithms using hadronic decays with flavor-specific final states reconstructed in a data set corresponding to an integrated luminosity of 62.8 fb−1 , collected at the resonance with the Belle II detector at the SuperKEKB collider. We measure the total effective tagging efficiency to be εeff=(30.0±1.2(stat)±0.4(syst))% for a category-based algorithm and εeff=(28.8±1.2(stat)±0.4(syst))% for a deep-learning-based algorithm

    Measurements of the branching fractions for BKγB \to K^{*}\gamma decays at Belle II

    Get PDF
    This paper reports a study of BKγB \to K^{*}\gamma decays using 62.8±0.662.8\pm 0.6 fb1^{-1} of data collected during 2019--2020 by the Belle II experiment at the SuperKEKB e+ee^{+}e^{-} asymmetric-energy collider, corresponding to (68.2±0.8)×106(68.2 \pm 0.8) \times 10^6 BBB\overline{B} events. We find 454±28454 \pm 28, 50±1050 \pm 10, 169±18169 \pm 18, and 160±17160 \pm 17 signal events in the decay modes B0K0[K+π]γB^{0} \to K^{*0}[K^{+}\pi^{-}]\gamma, B0K0[KS0π0]γB^{0} \to K^{*0}[K^0_{\rm S}\pi^{0}]\gamma, B+K+[K+π0]γB^{+} \to K^{*+}[K^{+}\pi^{0}]\gamma, and B+K+[K+π0]γB^{+} \to K^{*+}[K^{+}\pi^{0}]\gamma, respectively. The uncertainties quoted for the signal yield are statistical only. We report the branching fractions of these decays: B[B0K0[K+π]γ]=(4.5±0.3±0.2)×105,\mathcal{B} [B^{0} \to K^{*0}[K^{+}\pi^{-}]\gamma] = (4.5 \pm 0.3 \pm 0.2) \times 10^{-5}, B[B0K0[KS0π0]γ]=(4.4±0.9±0.6)×105,\mathcal{B} [B^{0} \to K^{*0}[K^0_{\rm S}\pi^{0}]\gamma] = (4.4 \pm 0.9 \pm 0.6) \times 10^{-5}, B[B+K+[K+π0]γ]=(5.0±0.5±0.4)×105, and\mathcal{B} [B^{+} \to K^{*+}[K^{+}\pi^{0}]\gamma] = (5.0 \pm 0.5 \pm 0.4)\times 10^{-5},\text{ and} B[B+K+[KS0π+]γ]=(5.4±0.6±0.4)×105,\mathcal{B} [B^{+} \to K^{*+}[K^0_{\rm S}\pi^{+}]\gamma] = (5.4 \pm 0.6 \pm 0.4) \times 10^{-5}, where the first uncertainty is statistical, and the second is systematic. The results are consistent with world-average values

    Measurement of the Λc+\Lambda_c^+ lifetime

    Full text link
    An absolute measurement of the Λc+\Lambda^{+}_c lifetime is reported using Λc+pKπ+\Lambda_c^+\rightarrow pK^-\pi^+ decays in events reconstructed from data collected by the Belle II experiment at the SuperKEKB asymmetric-energy electron-positron collider. The total integrated luminosity of the data sample, which was collected at center-of-mass energies at or near the Υ(4S)\Upsilon(4S) resonance, is 207.2~\mbox{fb}^{-1}. The result, τ(Λc+)=203.20±0.89(stat)±0.77(syst)\tau(\Lambda^{+}_c) = 203.20 \pm 0.89 \,\mathrm{(stat)} \pm 0.77 \,\mathrm{(syst)} fs, is the most precise measurement to date and is consistent with previous determinations.Comment: Accepted for publication in PR

    Search for an invisible ZZ^\prime in a final state with two muons and missing energy at Belle II

    Get PDF
    The LμLτL_{\mu}-L_{\tau} extension of the standard model predicts the existence of a lepton-flavor-universality-violating ZZ^{\prime} boson that couples only to the heavier lepton families. We search for such a ZZ^\prime through its invisible decay in the process e+eμ+μZe^+ e^- \to \mu^+ \mu^- Z^{\prime}. We use a sample of electron-positron collisions at a center-of-mass energy of 10.58GeV collected by the Belle II experiment in 2019-2020, corresponding to an integrated luminosity of 79.7fb1^{-1}. We find no excess over the expected standard-model background. We set 90%\%-confidence-level upper limits on the cross section for this process as well as on the coupling of the model, which ranges from 3×1033 \times 10^{-3} at low ZZ^{\prime} masses to 1 at ZZ^{\prime} masses of 8GeV/c2GeV/c^{2}

    Precise Measurement of the D0^{0} and D+^{+} Lifetimes at Belle II

    Get PDF
    We report a measurement of the D0^{0} and D+^{+} lifetimes using D0^{0}→K^{-}π+^{+} and D+^{+}→K^{-}π+^{+}π+^{+} decays reconstructed in e+^{+}e^{-}cc\overline{cc} data recorded by the Belle II experiment at the SuperKEKB asymmetric-energy e+^{+}e^{-} collider. The data, collected at center-of-mass energies at or near the Υ(4S) resonance, correspond to an integrated luminosity of 72 fb1^{-1}. The results, τ(D0^{0})=410.5±1.1(stat)±0.8(syst)  fs and τ(D+^{+})=1030.4±4.7(stat)±3.1(syst) fs, are the most precise to date and are consistent with previous determinations

    Measurement of the branching fraction for the decay BK(892)+B \to K^{\ast}(892)\ell^+\ell^- at Belle II

    Full text link
    We report a measurement of the branching fraction of BK(892)+B \to K^{\ast}(892)\ell^+\ell^- decays, where +=μ+μ\ell^+\ell^- = \mu^+\mu^- or e+ee^+e^-, using electron-positron collisions recorded at an energy at or near the Υ(4S)\Upsilon(4S) mass and corresponding to an integrated luminosity of 189189 fb1^{-1}. The data was collected during 2019--2021 by the Belle II experiment at the SuperKEKB e+ee^{+}e^{-} asymmetric-energy collider. We reconstruct K(892)K^{\ast}(892) candidates in the K+πK^+\pi^-, KS0π+K_{S}^{0}\pi^+, and K+π0K^+\pi^0 final states. The signal yields with statistical uncertainties are 22±622\pm 6, 18±618 \pm 6, and 38±938 \pm 9 for the decays BK(892)μ+μB \to K^{\ast}(892)\mu^+\mu^-, BK(892)e+eB \to K^{\ast}(892)e^+e^-, and BK(892)+B \to K^{\ast}(892)\ell^+\ell^-, respectively. We measure the branching fractions of these decays for the entire range of the dilepton mass, excluding the very low mass region to suppress the BK(892)γ(e+e)B \to K^{\ast}(892)\gamma(\to e^+e^-) background and regions compatible with decays of charmonium resonances, to be \begin{equation} {\cal B}(B \to K^{\ast}(892)\mu^+\mu^-) = (1.19 \pm 0.31 ^{+0.08}_{-0.07}) \times 10^{-6}, {\cal B}(B \to K^{\ast}(892)e^+e^-) = (1.42 \pm 0.48 \pm 0.09)\times 10^{-6}, {\cal B}(B \to K^{\ast}(892)\ell^+\ell^-) = (1.25 \pm 0.30 ^{+0.08}_{-0.07}) \times 10^{-6}, \end{equation} where the first and second uncertainties are statistical and systematic, respectively. These results, limited by sample size, are the first measurements of BK(892)+B \to K^{\ast}(892)\ell^+\ell^- branching fractions from the Belle II experiment

    Measurement of the branching fractions and CPCP asymmetries of B+π+π0B^+ \rightarrow \pi^+ \pi^0 and B+K+π0B^+ \rightarrow K^+ \pi^0 decays in 2019-2021 Belle II data

    Full text link
    We determine the branching fractions B{\mathcal{B}} and CPCP asymmetries ACP{\mathcal{A}_{{\it CP}}} of the decays B+π+π0B^+ \rightarrow \pi^+ \pi^0 and B+K+π0B^+ \rightarrow K^+ \pi^0. The results are based on a data set containing 198 million bottom-antibottom meson pairs corresponding to an integrated luminosity of 190  fb1190\;\text{fb}^{-1} recorded by the Belle II detector in energy-asymmetric electron-positron collisions at the Υ(4S)\Upsilon (4S) resonance. We measure B(B+π+π0)=(6.12±0.53±0.53)×106{\mathcal{B}(B^+ \rightarrow \pi^+ \pi^0) = (6.12 \pm 0.53 \pm 0.53)\times 10^{-6}}, B(B+K+π0)=(14.30±0.69±0.79)×106{\mathcal{B}(B^+ \rightarrow K^+ \pi^0) = (14.30 \pm 0.69 \pm 0.79)\times 10^{-6}}, ACP(B+π+π0)=0.085±0.085±0.019{\mathcal{A}_{{\it CP}}(B^+ \rightarrow \pi^+ \pi^0) = -0.085 \pm 0.085 \pm 0.019}, and ACP(B+K+π0)=0.014±0.047±0.010{\mathcal{A}_{{\it CP}}(B^+ \rightarrow K^+ \pi^0) = 0.014 \pm 0.047 \pm 0.010}, where the first uncertainties are statistical and the second are systematic. These results improve a previous Belle II measurement and agree with the world averages

    Determination of Vub|V_{ub}| from untagged B0π+νB^0\to\pi^- \ell^+ \nu_{\ell} decays using 2019-2021 Belle II data

    Full text link
    We present an analysis of the charmless semileptonic decay B0π+νB^0\to\pi^- \ell^+ \nu_{\ell}, where =e,μ\ell = e, \mu, from 198.0 million pairs of BBˉB\bar{B} mesons recorded by the Belle II detector at the SuperKEKB electron-positron collider. The decay is reconstructed without identifying the partner BB meson. The partial branching fractions are measured independently for B0πe+νeB^0\to\pi^- e^+ \nu_{e} and B0πμ+νμB^0\to\pi^- \mu^+ \nu_{\mu} as functions of q2q^{2} (momentum transfer squared), using 3896 B0πe+νeB^0\to\pi^- e^+ \nu_{e} and 5466 B0πμ+νμB^0\to\pi^- \mu^+ \nu_{\mu} decays. The total branching fraction is found to be (1.426±0.056±0.125)×104(1.426 \pm 0.056 \pm 0.125) \times 10^{-4} for B0π+νB^0\to\pi^- \ell^+ \nu_{\ell} decays, where the uncertainties are statistical and systematic, respectively. By fitting the measured partial branching fractions as functions of q2q^{2}, together with constraints on the nonperturbative hadronic contribution from lattice QCD calculations, the magnitude of the Cabibbo-Kobayashi-Maskawa matrix element VubV_{ub}, (3.55±0.12±0.13±0.17)×103(3.55 \pm 0.12 \pm 0.13 \pm 0.17) \times 10^{-3}, is extracted. Here, the first uncertainty is statistical, the second is systematic and the third is theoretical

    Observation of BD()KKS0{B\to D^{(*)} K^- K^{0}_S} decays using the 2019-2022 Belle II data sample

    Full text link
    We present a measurement of the branching fractions of four B0,D()+,0KKS0B^{0,-}\to D^{(*)+,0} K^- K^{0}_S decay modes. The measurement is based on data from SuperKEKB electron-positron collisions at the Υ(4S)\Upsilon(4S) resonance collected with the Belle II detector and corresponding to an integrated luminosity of 362 fb1{362~\text{fb}^{-1}}. The event yields are extracted from fits to the distributions of the difference between expected and observed BB meson energy to separate signal and background, and are efficiency-corrected as a function of the invariant mass of the KKS0K^-K_S^0 system. We find the branching fractions to be: B(BD0KKS0)=(1.89±0.16±0.10)×104, \text{B}(B^-\to D^0K^-K_S^0)=(1.89\pm 0.16\pm 0.10)\times 10^{-4}, B(B0D+KKS0)=(0.85±0.11±0.05)×104, \text{B}(\overline B{}^0\to D^+K^-K_S^0)=(0.85\pm 0.11\pm 0.05)\times 10^{-4}, B(BD0KKS0)=(1.57±0.27±0.12)×104, \text{B}(B^-\to D^{*0}K^-K_S^0)=(1.57\pm 0.27\pm 0.12)\times 10^{-4}, B(B0D+KKS0)=(0.96±0.18±0.06)×104, \text{B}(\overline B{}^0\to D^{*+}K^-K_S^0)=(0.96\pm 0.18\pm 0.06)\times 10^{-4}, where the first uncertainty is statistical and the second systematic. These results include the first observation of B0D+KKS0\overline B{}^0\to D^+K^-K_S^0, BD0KKS0B^-\to D^{*0}K^-K_S^0, and B0D+KKS0\overline B{}^0\to D^{*+}K^-K_S^0 decays and a significant improvement in the precision of B(BD0KKS0)\text{B}(B^-\to D^0K^-K_S^0) compared to previous measurements
    corecore