287 research outputs found

    RASSF1A Signaling in the Heart: Novel Functions beyond Tumor Suppression

    Get PDF
    The RASSF proteins are a family of polypeptides, each containing a conserved Ras association domain, suggesting that these scaffold proteins may be effectors of activated Ras or Ras-related small GTPases. RASSF proteins are characterized by their ability to inhibit cell growth and proliferation while promoting cell death. RASSF1 isoform A is an established tumor suppressor and is frequently silenced in a variety of tumors and human cancer cell lines. However, our understanding of its function in terminally differentiated cell types, such as cardiac myocytes, is relatively nascent. Herein, we review the role of RASSF1A in cardiac physiology and disease and highlight signaling pathways that mediate its function

    Boosting autophagy in the diabetic heart: a translational perspective

    Get PDF
    Diabetes, obesity, and dyslipidemia are main risk factors that promote the development of cardiovascular diseases. These metabolic abnormalities are frequently found to be associated together in a highly morbid clinical condition called metabolic syndrome. Metabolic derangements promote endothelial dysfunction, atherosclerotic plaque formation and rupture, cardiac remodeling and dysfunction. This evidence strongly encourages the elucidation of the mechanisms through which obesity, diabetes, and metabolic syndrome induce cellular abnormalities and dysfunction in order to discover new therapeutic targets and strategies for their prevention and treatment. Numerous studies employing both dietary and genetic animal models of obesity and diabetes have demonstrated that autophagy, an intracellular system for protein degradation, is impaired in the heart under these conditions. This suggests that autophagy reactivation may represent a future potential therapeutic intervention to reduce cardiac maladaptive alterations in patients with metabolic derangements. In fact, autophagy is a critical mechanism to preserve cellular homeostasis and survival. In addition, the physiological activation of autophagy protects the heart during stress, such as acute ischemia, starvation, chronic myocardial infarction, pressure overload, and proteotoxic stress. All these aspects will be discussed in our review article together with the potential ways to reactivate autophagy in the context of obesity, metabolic syndrome, and diabetes

    Rag GTPases are cardioprotective by regulating lysosomal function.

    Get PDF
    The Rag family proteins are Ras-like small GTPases that have a critical role in amino-acid-stimulated mTORC1 activation by recruiting mTORC1 to lysosome. Despite progress in the mechanistic understanding of Rag GTPases in mTORC1 activation, little is known about the physiological function of Rag GTPases in vivo. Here we show that loss of RagA and RagB (RagA/B) in cardiomyocytes results in hypertrophic cardiomyopathy and phenocopies lysosomal storage diseases, although mTORC1 activity is not substantially impaired in vivo. We demonstrate that despite upregulation of lysosomal protein expression by constitutive activation of the transcription factor EB (TFEB) in RagA/B knockout mouse embryonic fibroblasts, lysosomal acidification is compromised owing to decreased v-ATPase level in the lysosome fraction. Our study uncovers RagA/B GTPases as key regulators of lysosomal function and cardiac protection

    Translocation of caveolin regulates stretch-induced ERK activity in vascular smooth muscle

    Get PDF
    Kawabe, J; Okumura, S; Lee, MC; Sadoshima, J; Ishikawa, Y, AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 286(5), H1845-H1852, 2004. "Copyright 2004 by the American Physical Society." publisherMechanical stress contributes to vascular disease related to hypertension. Activation of ERK is key to mediating cellular proliferation and vascular remodeling in response to stretch stress. However, the mechanism by which stretch mediates ERK activation in the vascular tissue is still unclear. Caveolin, a major component of a flasklike invaginated caveolae, acts as an adaptor protein for an integrin-mediated signaling pathway. We found that cyclic stretch transiently induced translocation of caveolin from caveolae to noncaveolar membrane sites in vascular smooth muscle cells (VSMCs). This translocation of caveolin was determined by detergent solubility, sucrose gradient fractionation, and immunocytochemistry. Cyclic stretch induced ERK activation; the activity peaked at 5 min (the early phase), decreased gradually, but persisted up to 120 min (the late phase). Disruption of caveolae by methyl-β-cyclodextrin, decreasing the caveolar caveolin and accumulating the noncaveolar caveolin, enhanced ERK activation in both the early and late phases. When endogenous caveolins were downregulated, however, the late-phase ERK activation was subsided completely. Caveolin, which was translocated to noncaveolar sites in response to stretch, is associated with β_1-integrins as well as with Fyn and Shc, components required for ERK activation. Taken together, caveolin in caveolae may keep ERK inactive, but when caveolin is translocated to noncaveolar sites in response to stretch stress, caveolin mediates stretch-induced ERK activation through an association with β_1-integrins/Fyn/Shc. We suggest that stretch-induced translocation of caveolin to noncaveolar sites plays an important role in mediating stretch-induced ERK activation in VSMCs

    Thioredoxin-1 maintains mechanistic target of rapamycin (mTOR) function during oxidative stress in cardiomyocytes

    Get PDF
    Thioredoxin 1 (Trx1) is a 12-kDa oxidoreductase that catalyzes thiol-disulfide exchange reactions to reduce proteins with disulfide bonds. As such, Trx1 helps protect the heart against stresses, such as ischemia and pressure overload. Mechanistic target of rapamycin (mTOR) is a serine/threonine kinase that regulates cell growth, metabolism, and survival. We have shown previously that mTOR activity is increased in response to myocardial ischemia-reperfusion injury. However, whether Trx1 interacts with mTOR to preserve heart function remains unknown. Using a substrate-trapping mutant of Trx1 (Trx1C35S), we show here that mTOR is a direct interacting partner of Trx1 in the heart. In response to H2O2 treatment in cardiomyocytes, mTOR exhibited a high molecular weight shift in non-reducing SDS-PAGE in a 2-mercaptoethanol-sensitive manner, suggesting that mTOR is oxidized and forms disulfide bonds with itself or other proteins. The mTOR oxidation was accompanied by reduced phosphorylation of endogenous substrates, such as S6 kinase (S6K) and 4E-binding protein 1 (4E-BP1) in cardiomyocytes. Immune complex kinase assays disclosed that H2O2 treatment diminished mTOR kinase activity, indicating that mTOR is inhibited by oxidation. Of note, Trx1 overexpression attenuated both H2O2-mediated mTOR oxidation and inhibition, whereas Trx1 knockdown increased mTOR oxidation and inhibition. Moreover, Trx1 normalized H2O2-induced down-regulation of metabolic genes and stimulation of cell death, and an mTOR inhibitor abolished Trx1-mediated rescue of gene expression. H2O2-induced oxidation and inhibition of mTOR were attenuated when Cys-1483 of mTOR was mutated to phenylalanine. These results suggest that Trx1 protects cardiomyocytes against stress by reducing mTOR at Cys-1483, thereby preserving the activity of mTOR and inhibiting cell death

    Autophagy Plays an Essential Role in Mediating Regression of Hypertrophy during Unloading of the Heart

    Full text link
    Autophagy is a bulk degradation mechanism for cytosolic proteins and organelles. The heart undergoes hypertrophy in response to mechanical load but hypertrophy can regress upon unloading. We hypothesize that autophagy plays an important role in mediating regression of cardiac hypertrophy during unloading. Mice were subjected to transverse aortic constriction (TAC) for 1 week, after which the constriction was removed (DeTAC). Regression of cardiac hypertrophy was observed after DeTAC, as indicated by reduction of LVW/BW and cardiomyocyte cross-sectional area. Indicators of autophagy, including LC3-II expression, p62 degradation and GFP-LC3 dots/cell, were significantly increased after DeTAC, suggesting that autophagy is induced. Stimulation of autophagy during DeTAC was accompanied by upregulation of FoxO1. Upregulation of FoxO1 and autophagy was also observed in vitro when cultured cardiomyocytes were subjected to mechanical stretch followed by incubation without stretch (de-stretch). Transgenic mice with cardiac-specific overexpression of FoxO1 exhibited smaller hearts and upregulation of autophagy. Overexpression of FoxO1 in cultured cardiomyocytes significantly reduced cell size, an effect which was attenuated when autophagy was inhibited. To further examine the role of autophagy and FoxO1 in mediating the regression of cardiac hypertrophy, beclin1+/2 mice and cultured cardiomyocytes transduced with adenoviruses harboring shRNA-beclin1 or shRNA-FoxO1 were subjected to TAC/ stretch followed by DeTAC/de-stretch. Regression of cardiac hypertrophy achieved after DeTAC/de-stretch was significantly attenuated when autophagy was suppressed through downregulation of beclin1 or FoxO1. These results suggest that autophagy and FoxO1 play an essential role in mediating regression of cardiac hypertrophy during mechanical unloading
    corecore