8 research outputs found

    Omecamtiv mecarbil in chronic heart failure with reduced ejection fraction, GALACTIC‐HF: baseline characteristics and comparison with contemporary clinical trials

    Get PDF
    Aims: The safety and efficacy of the novel selective cardiac myosin activator, omecamtiv mecarbil, in patients with heart failure with reduced ejection fraction (HFrEF) is tested in the Global Approach to Lowering Adverse Cardiac outcomes Through Improving Contractility in Heart Failure (GALACTIC‐HF) trial. Here we describe the baseline characteristics of participants in GALACTIC‐HF and how these compare with other contemporary trials. Methods and Results: Adults with established HFrEF, New York Heart Association functional class (NYHA) ≥ II, EF ≤35%, elevated natriuretic peptides and either current hospitalization for HF or history of hospitalization/ emergency department visit for HF within a year were randomized to either placebo or omecamtiv mecarbil (pharmacokinetic‐guided dosing: 25, 37.5 or 50 mg bid). 8256 patients [male (79%), non‐white (22%), mean age 65 years] were enrolled with a mean EF 27%, ischemic etiology in 54%, NYHA II 53% and III/IV 47%, and median NT‐proBNP 1971 pg/mL. HF therapies at baseline were among the most effectively employed in contemporary HF trials. GALACTIC‐HF randomized patients representative of recent HF registries and trials with substantial numbers of patients also having characteristics understudied in previous trials including more from North America (n = 1386), enrolled as inpatients (n = 2084), systolic blood pressure < 100 mmHg (n = 1127), estimated glomerular filtration rate < 30 mL/min/1.73 m2 (n = 528), and treated with sacubitril‐valsartan at baseline (n = 1594). Conclusions: GALACTIC‐HF enrolled a well‐treated, high‐risk population from both inpatient and outpatient settings, which will provide a definitive evaluation of the efficacy and safety of this novel therapy, as well as informing its potential future implementation

    Biological removal of organic matter , nitrogen and phosphorus in a system type anaerobic-anoxic -aerobic

    No full text
    Este trabajo muestra los resultados experimentales de una serie de procesos biológicos unitarios para la remoción conjunta de materia orgánica (MO), nitrógeno (N) y fósforo (P), empleando un sustrato sintético similar al agua residual doméstica de concentración media. Se utilizó un sistema tipo A2O (anaerobio-anóxico-aerobio), que se desarrolló en dos etapas. La etapa preliminar duró 60 días y comprendió, además de la aclimatación del lodo biológico, el ensayo de espuma de poliuretano, como material de soporte en la etapa aerobia. La etapa secundaria duró 280 días más, en los que el sistema alcanzó una estabilidad, lográndose un aumento notable en las eficiencias promedio de remoción de 92,5 % en materia orgánica, 87,7 % en nitrógeno y 83,5 % en fósforo. Se realizó un seguimiento permanente a parámetros tales como el oxígeno disuelto (OD) y el potencial de óxido reducción (ORP), que variaron de acuerdo con el proceso correspondiente a cada unidad de tratamiento, y el pH, que permaneció en valores superiores a 7,2 unidades, garantizando la viabilidad del proceso de nitrificacióndesnitrificación. Adicionalmente, se realizó un estudio hidráulico con trazadores para evaluar el efecto del material de soporte en el régimen hidráulico de la unidad aerobia.Experimental results from a series of biological unitary processes for the simultaneous removal of organic matter (OM), nitrogen (N) and phosphorus (P) are shown in this study. A synthetic substrate similar to a domestic wastewater of average concentration was used. The experimental development was made using an A2O system (anoxic-aerobic-anaerobic) performed in two phases. The preliminary stage lasted 60 days and included, besides the acclimatization of the biological sludge, the examination of polyurethane foam as a support medium in the aerobic phase. In the secondary stage, the stability was rapidly reached; this phase lasted 280 more days; a significant increase of the removal efficiencies was observed to be close to 92.5 % in organic matter, 87.7 % in nitrogen, and 83.5 % in phosphorus. Parameters such as dissolved oxygen (DO) and oxide reduction potential (ORP) were permanently monitored and maintained in values according to the requirements of the processes in each reactor. On the other hand, pH was measured to be higher than 7.2 units, ensuring the viability of the nitrification-denitrification processes. A hydraulic study using tracers was developed in order to find out the effect of the support medium on the hydraulic regimen of the aerobic reactor

    Primary Treatment of Domestic Wastewater with the Use of Unmodified and Chemically Modified Drinking Water Treatment Sludge

    No full text
    Improved wastewater (WW) treatment contributes to preserving human life and aquatic ecosystems and acting on climate change. The use of drinking water treatment sludges (WTS) as coagulants in the primary treatment of WW contributes, in this regard, and simultaneously enables the sustainable management of this waste. In this work, the improvement of the primary treatment of real domestic WW using unmodified WTS and chemically modified WTS with sulphuric and hydrochloric acids (reactive sludges—RSs) as coagulants was evaluated. The evaluated WTS contains a higher fraction of inorganic solids and is mainly an amorphous material. The wet WTS (W-WTS) showed a better performance in enhancing WW clarification (up to 76%), as measured by turbidity in comparison with the dry WTS (D-WTS). All RSs improved this performance considerably (up to 98%), and of these, the sulphuric reactive sludge generated from the W-WTS (SRS-W) showed the lowest costs associated with acid consumption for activation. The best treatments with W-WTS and SRS-W significantly improved the removal of solids (total suspended solids > 90% and volatile suspended solids > 80%), organic matter (total biochemical oxygen demand > 50% and total chemical oxygen demand > 55%), and total phosphorus (>75%) compared to natural sedimentation, with slight differences in favour of SRS-W, especially in the removal of phosphorus species. The reuse of WTSs in primary WW treatment becomes a valuable circular economy proposal in the water sector, which simultaneously valorises waste from the drinking water process and contributes to the fulfilment of Sustainable Development Goal 6 (Clean Water and Sanitation

    Primary Treatment of Domestic Wastewater with the Use of Unmodified and Chemically Modified Drinking Water Treatment Sludge

    No full text
    Improved wastewater (WW) treatment contributes to preserving human life and aquatic ecosystems and acting on climate change. The use of drinking water treatment sludges (WTS) as coagulants in the primary treatment of WW contributes, in this regard, and simultaneously enables the sustainable management of this waste. In this work, the improvement of the primary treatment of real domestic WW using unmodified WTS and chemically modified WTS with sulphuric and hydrochloric acids (reactive sludges—RSs) as coagulants was evaluated. The evaluated WTS contains a higher fraction of inorganic solids and is mainly an amorphous material. The wet WTS (W-WTS) showed a better performance in enhancing WW clarification (up to 76%), as measured by turbidity in comparison with the dry WTS (D-WTS). All RSs improved this performance considerably (up to 98%), and of these, the sulphuric reactive sludge generated from the W-WTS (SRS-W) showed the lowest costs associated with acid consumption for activation. The best treatments with W-WTS and SRS-W significantly improved the removal of solids (total suspended solids > 90% and volatile suspended solids > 80%), organic matter (total biochemical oxygen demand > 50% and total chemical oxygen demand > 55%), and total phosphorus (>75%) compared to natural sedimentation, with slight differences in favour of SRS-W, especially in the removal of phosphorus species. The reuse of WTSs in primary WW treatment becomes a valuable circular economy proposal in the water sector, which simultaneously valorises waste from the drinking water process and contributes to the fulfilment of Sustainable Development Goal 6 (Clean Water and Sanitation

    A Coagulation Process Combined with a Multi-Stage Filtration System for Drinking Water Treatment: An Alternative for Small Communities

    No full text
    As set out in the Sustainable Development Goals, it is necessary to achieve universal and equitable access to safe drinking water services for all the world’s population. Appropriate water treatment alternatives for rural areas should be prioritised to achieve this goal. In this work, a simplified drinking water treatment system (SDWTS), which has great potential for application in small communities and rural areas, was evaluated on a pilot scale for turbidity and apparent colour removal using synthetic raw water. The SDWTS integrates Upflow Gravel Filter in Layers (UGFL) and Rapid Sand Filter (RSF) with previous coagulation. This evaluation was carried out using a 23 factorial experiment, with the factors: type of water, type of coagulant and flow. The factorial design showed that the SDWTS had the highest turbidity removal efficiencies (>98.7%) with type II (20 NTU) water and PACl coagulant, while flow rate had no significant effect on turbidity removal. Under optimal operating conditions (type II water, PACl and 1.0 m3/d), the SDWTS produces treated water that meets the standards required by Colombian regulations and World Health Organisation recommendations for drinking water, concerning the variables: turbidity, apparent colour, total coliforms, E. coli, pH, electrical conductivity and Al. The SDWTS maintained its capacity to produce potable water when evaluated with the increased operating flow (up to 3.0 m3/d) and raw water turbidity (up to 50 NTU). The SDWTS can be an efficient and innovative alternative for water treatment, and its implementation in small communities can contribute to equitable access to drinking water

    A Coagulation Process Combined with a Multi-Stage Filtration System for Drinking Water Treatment: An Alternative for Small Communities

    No full text
    As set out in the Sustainable Development Goals, it is necessary to achieve universal and equitable access to safe drinking water services for all the world’s population. Appropriate water treatment alternatives for rural areas should be prioritised to achieve this goal. In this work, a simplified drinking water treatment system (SDWTS), which has great potential for application in small communities and rural areas, was evaluated on a pilot scale for turbidity and apparent colour removal using synthetic raw water. The SDWTS integrates Upflow Gravel Filter in Layers (UGFL) and Rapid Sand Filter (RSF) with previous coagulation. This evaluation was carried out using a 23 factorial experiment, with the factors: type of water, type of coagulant and flow. The factorial design showed that the SDWTS had the highest turbidity removal efficiencies (>98.7%) with type II (20 NTU) water and PACl coagulant, while flow rate had no significant effect on turbidity removal. Under optimal operating conditions (type II water, PACl and 1.0 m3/d), the SDWTS produces treated water that meets the standards required by Colombian regulations and World Health Organisation recommendations for drinking water, concerning the variables: turbidity, apparent colour, total coliforms, E. coli, pH, electrical conductivity and Al. The SDWTS maintained its capacity to produce potable water when evaluated with the increased operating flow (up to 3.0 m3/d) and raw water turbidity (up to 50 NTU). The SDWTS can be an efficient and innovative alternative for water treatment, and its implementation in small communities can contribute to equitable access to drinking water

    Optimización de la etapa de arranque de reactores anaerobios mediante el mejoramiento de la calidad de diferentes semillas en condiciones dinámicas de operación

    No full text
    IP 1106-12-031-96Incluye anexos.PONENCIA(S) EN CONGRESO: Evaluacion de potenciales semillas parala inoculacion de reactores anaerobios /;Luis Francisco Ramirez ... [et al.] -- p. 34-44 -- En: Seminario'-Taller Latinoamericano sobre tratamiento;anaerobio de aguas residuales. (4 : 1996 : Bucaramanga) --[s.l: s.n], 1996 -- p. ; 28 cm. -- Influencia de;la variacion de la carga organica en la etapa de arranquede unreactor UASB / Jenny A. Rodriguez V. ... [et;de la Digestion Anaerobia y Caracterizacion de Lodos Anaerobios.(1997 jun. 4-6 : Medellin) / Francisco;Molina, Didier Alazard ; Organiza: Grupo de higiene AmbientaleIndustrialde la Facultad de Ingenieria de la;Universidad de Antioquia. -- Medellin : Universidad de Antioquia, 1997. --p. ; 28 cm.;al.] -- En: Seminario Internacional sobre tratamiento de aguasresidualesy biosolidos. (oct. 12-13 : Tunja); [s.l : s.n], -- p. ; 28 cm. -- El tratamiento de aguasresiduales una labor interdisciplinaria de;ingenieros y microbiologos / Fransisco Jose Molina Perez -'- en:Congreso Internacional El Laboratorio y la;Salud Integral: Una Persectiva (1998 nov. 13-15 : Medellin) --ARTICULO(S) EN REVISTA: Evaluacion de la;presion selectiva y de la adicion de bacterias liofilizadas comoalte alternativas de mejoramiento de una;semilla de lodo activado crudo espesado para el arranque de reactores UASB/ Jorge Humberto Sierra C., Julio;Cesar Saldarriaga M. -- En: Revista Facultad de Ingenieria. --No. 22 (jun. 2001); p. 7-21. -- Evaluacion;microbiologica de un lodo crudo proveniente de la planta de tratamiento deaguas residuales del municipio de;El Retiro y del mismo lodo a condiciones anaerobias / FernandoNaranjo P.,Maria Elena Gonzalez D., Francisco;Molina P. -- En: Revista Facultad de Ingenieria. -- No. 22(jun. 2001); p. 22-28 -- CURSO(S): Microbiologi

    Cardiac myosin activation with omecamtiv mecarbil in systolic heart failure

    No full text
    BACKGROUND The selective cardiac myosin activator omecamtiv mecarbil has been shown to improve cardiac function in patients with heart failure with a reduced ejection fraction. Its effect on cardiovascular outcomes is unknown. METHODS We randomly assigned 8256 patients (inpatients and outpatients) with symptomatic chronic heart failure and an ejection fraction of 35% or less to receive omecamtiv mecarbil (using pharmacokinetic-guided doses of 25 mg, 37.5 mg, or 50 mg twice daily) or placebo, in addition to standard heart-failure therapy. The primary outcome was a composite of a first heart-failure event (hospitalization or urgent visit for heart failure) or death from cardiovascular causes. RESULTS During a median of 21.8 months, a primary-outcome event occurred in 1523 of 4120 patients (37.0%) in the omecamtiv mecarbil group and in 1607 of 4112 patients (39.1%) in the placebo group (hazard ratio, 0.92; 95% confidence interval [CI], 0.86 to 0.99; P = 0.03). A total of 808 patients (19.6%) and 798 patients (19.4%), respectively, died from cardiovascular causes (hazard ratio, 1.01; 95% CI, 0.92 to 1.11). There was no significant difference between groups in the change from baseline on the Kansas City Cardiomyopathy Questionnaire total symptom score. At week 24, the change from baseline for the median N-terminal pro-B-type natriuretic peptide level was 10% lower in the omecamtiv mecarbil group than in the placebo group; the median cardiac troponin I level was 4 ng per liter higher. The frequency of cardiac ischemic and ventricular arrhythmia events was similar in the two groups. CONCLUSIONS Among patients with heart failure and a reduced ejection, those who received omecamtiv mecarbil had a lower incidence of a composite of a heart-failure event or death from cardiovascular causes than those who received placebo. (Funded by Amgen and others; GALACTIC-HF ClinicalTrials.gov number, NCT02929329; EudraCT number, 2016 -002299-28.)
    corecore