50 research outputs found

    Ultra-low-density genotype panels for breed assignment of Angus and Hereford cattle

    Get PDF
    peer-reviewedAngus and Hereford beef is marketed internationally for apparent superior meat quality attributes; DNA-based breed authenticity could be a useful instrument to ensure consumer confidence on premium meat products. The objective of this study was to develop an ultra-low-density genotype panel to accurately quantify the Angus and Hereford breed proportion in biological samples. Medium-density genotypes (13 306 single nucleotide polymorphisms (SNPs)) were available on 54 703 commercial and 4042 purebred animals. The breed proportion of the commercial animals was generated from the medium-density genotypes and this estimate was regarded as the gold-standard breed composition. Ten genotype panels (100 to 1000 SNPs) were developed from the medium-density genotypes; five methods were used to identify the most informative SNPs and these included the Delta statistic, the fixation (Fst) statistic and an index of both. Breed assignment analyses were undertaken for each breed, panel density and SNP selection method separately with a programme to infer population structure using the entire 13 306 SNP panel (representing the gold-standard measure). Breed assignment was undertaken for all commercial animals (n=54 703), animals deemed to contain some proportion of Angus based on pedigree (n=5740) and animals deemed to contain some proportion of Hereford based on pedigree (n=5187). The predicted breed proportion of all animals from the lower density panels was then compared with the gold-standard breed prediction. Panel density, SNP selection method and breed all had a significant effect on the correlation of predicted and actual breed proportion. Regardless of breed, the Index method of SNP selection numerically (but not significantly) outperformed all other selection methods in accuracy (i.e. correlation and root mean square of prediction) when panel density was ⩾300 SNPs. The correlation between actual and predicted breed proportion increased as panel density increased. Using 300 SNPs (selected using the global index method), the correlation between predicted and actual breed proportion was 0.993 and 0.995 in the Angus and Hereford validation populations, respectively. When SNP panels optimised for breed prediction in one population were used to predict the breed proportion of a separate population, the correlation between predicted and actual breed proportion was 0.034 and 0.044 weaker in the Hereford and Angus populations, respectively (using the 300 SNP panel). It is necessary to include at least 300 to 400 SNPs (per breed) on genotype panels to accurately predict breed proportion from biological samples

    Population structure and breed composition prediction in a multi-breed sheep population using genome-wide single nucleotide polymorphism genotypes

    Get PDF
    peer-reviewedKnowledge of population structure and breed composition of a population can be advantageous for a number of reasons; these include designing optimal (cross)breeding strategies in order to maximise non-additive genetic effects, maintaining flockbook integrity by authenticating animals being registered and as a quality control measure in the genotyping process. The objectives of the present study were to 1) describe the population structure of 24 sheep breeds, 2) quantify the breed composition of both flockbook-recorded and crossbred animals using single nucleotide polymorphism BLUP (SNP-BLUP), and 3) quantify the accuracy of breed composition prediction from low-density genotype panels containing between 2000 and 6000 SNPs. In total, 9334 autosomal SNPs on 11 144 flockbook-recorded animals and 1172 crossbred animals were used. The population structure of all breeds was characterised by principal component analysis (PCA) as well as the pairwise breed fixation index (Fst). The total number of animals, all of which were purebred, included in the calibration population for SNP-BLUP was 2579 with the number of animals per breed ranging from 9 to 500. The remaining 9559 flockbook-recorded animals, composite breeds and crossbred animals represented the test population; three breeds were excluded from breed composition prediction. The breed composition predicted using SNP-BLUP with 9334 SNPs was considered the gold standard prediction. The pairwise breed Fst ranged from 0.040 (between the Irish Blackface and Scottish Blackface) to 0.282 (between the Border Leicester and Suffolk). Principal component analysis revealed that the Suffolk from Ireland and the Suffolk from New Zealand formed distinct, non-overlapping clusters. In contrast, the Texel from Ireland and that from New Zealand formed integrated, overlapping clusters. Composite animals such as the Belclare clustered close to its founder breeds (i.e., Finn, Galway, Lleyn and Texel). When all 9334 SNPs were used to predict breed composition, an animal that had a majority breed proportion predicted to be ≥0.90 was defined as purebred for the present study. As the panel density decreased, the predicted breed proportion threshold, used to identify animals as purebred, also decreased (≥0.85 with 6000 SNPs to ≥0.60 with 2000 SNPs). In all, results from the study suggest that breed composition for purebred and crossbred animals can be determined with SNP-BLUP using ≥5000 SNPs

    What is the potential for context aware communication aids?

    Get PDF
    Use of voice output communication aids (VOCAs) can be a very effective strategy to assist people with speech impairments in communicating. Despite this, people who use communication aids often express frustration with VOCAs—desiring devices that are simpler, quicker and more effective to use. Whilst it is not possible to resolve all these issues with technology, it is argued that significant progress can be made. The use of contextual information is one development that could improve the simplicity and effectiveness of communication aid design. Improving the effectiveness of communication aids, including through the use of context support, is a goal of the NIHR Devices for Dignity Assistive Technology Theme. This discussion paper examines the potential for creating ‘context aware’ communication aids. Three projects in which the authors have been involved are described to illustrate different approaches to the use of contextual information
    corecore