19 research outputs found

    On Excess Compensation Earned by Underwriters in Firm Commitment Initial Public Offerings of Common Stock: An Empirical Analysis

    Get PDF
    This paper examines compensation for the underwriting activity in firm commitment initial public offerings (IPOs) of common stock in the U.S. When compensation for origination, management and marketing efforts are excluded from total underwriter compensation, we find that the portion of the total compensation assigned for the underwriting activity itself exceeds theoretical compensation only for issues that sell out very quickly. We interpret this finding as empirical evidence supporting the incentive for underwriters to underprice IPOs. Finally, we find excess compensation to underwriters is positively related to the riskiness of the IPO and negatively related to the degree of competition among investment bankers and the size of the IPO

    Characterization of a Naturally Occurring Breast Cancer Subset Enriched in Epithelial-to-Mesenchymal Transition and Stem Cell Characteristics

    Get PDF
    Metaplastic breast cancers (MBC) are aggressive, chemoresistant tumors characterized by lineage plasticity. To advance understanding of their pathogenesis and relatedness to other breast cancer subtypes, 28 MBCs were compared with common breast cancers using comparative genomic hybridization, transcriptional profiling, and reverse-phase protein arrays and by sequencing for common breast cancer mutations. MBCs showed unique DNA copy number aberrations compared with common breast cancers. PIK3CA mutations were detected in 9 of 19 MBCs (47.4%) versus 80 of 232 hormone receptor–positive cancers (34.5%; P = 0.32), 17 of 75 HER-2–positive samples (22.7%; P = 0.04), 20 of 240 basal-like cancers (8.3%; P < 0.0001), and 0 of 14 claudin-low tumors (P = 0.004). Of 7 phosphatidylinositol 3-kinase/AKT pathway phosphorylation sites, 6 were more highly phosphorylated in MBCs than in other breast tumor subtypes. The majority of MBCs displayed mRNA profiles different from those of the most common, including basal-like cancers. By transcriptional profiling, MBCs and the recently identified claudin-low breast cancer subset constitute related receptor-negative subgroups characterized by low expression of GATA3-regulated genes and of genes responsible for cell-cell adhesion with enrichment for markers linked to stem cell function and epithelial-to-mesenchymal transition (EMT). In contrast to other breast cancers, claudin-low tumors and most MBCs showed a significant similarity to a “tumorigenic” signature defined using CD44+/CD24− breast tumor–initiating stem cell–like cells. MBCs and claudin-low tumors are thus enriched in EMT and stem cell–like features, and may arise from an earlier, more chemoresistant breast epithelial precursor than basal-like or luminal cancers. PIK3CA mutations, EMT, and stem cell-like characteristics likely contribute to the poor outcomes of MBC and suggest novel therapeutic targets

    Characterization of a naturally occurring breast cancer subset enriched in epithelial-to-mesenchymal transition and stem cell characteristics

    Get PDF
    Metaplastic breast cancers (MBC) are aggressive, chemoresistant tumors characterized by lineage plasticity. To advance understanding of their pathogenesis and relatedness to other breast cancer subtypes, 28 MBCs were compared with common breast cancers using comparative genomic hybridization, transcriptional profiling, and reverse-phase protein arrays and by sequencing for common breast cancer mutations. MBCs showed unique DNA copy number aberrations compared with common breast cancers. PIK3CA mutations were detected in 9 of 19 MBCs (47.4%) versus 80 of 232 hormone receptor–positive cancers (34.5%; P = 0.32), 17 of 75 HER-2–positive samples (22.7%; P = 0.04), 20 of 240 basal-like cancers (8.3%; P less than 0.0001), and 0 of 14 claudin-low tumors (P = 0.004). Of 7 phosphatidylinositol 3-kinase/AKT pathway phosphorylation sites, 6 were more highly phosphorylated in MBCs than in other breast tumor subtypes. The majority of MBCs displayed mRNA profiles different from those of the most common, including basal-like cancers. By transcriptional profiling, MBCs and the recently identified claudin-low breast cancer subset constitute related receptor-negative subgroups characterized by low expression of GATA3-regulated genes and of genes responsible for cell-cell adhesion with enrichment for markers linked to stem cell function and epithelial-to-mesenchymal transition (EMT). In contrast to other breast cancers, claudin-low tumors and most MBCs showed a significant similarity to a “tumorigenic” signature defined using CD44+/CD24− breast tumor–initiating stem cell–like cells. MBCs and claudin-low tumors are thus enriched in EMT and stem cell–like features, and may arise from an earlier, more chemoresistant breast epithelial precursor than basal-like or luminal cancers. PIK3CA mutations, EMT, and stem cell-like characteristics likely contribute to the poor outcomes of MBC and suggest novel therapeutic targets. [Cancer Res 2009;69(10):4116–24

    Quasi-Monte Carlo Methods in Numerical Finance

    No full text
    This paper introduces and illustrates a new version of the Monte Carlo method that has attractive properties for the numerical valuation of derivatives. The traditional Monte Carlo method has proven to be a powerful and flexible tool for many types of derivatives calculations. Under the conventional approach pseudo-random numbers are used to evaluate the expression of interest. Unfortunately, the use of pseudo-random numbers yields an error bound that is probabilistic which can be a disadvantage. Another drawback of the standard approach is that many simulations may be required to obtain a high level of accuracy. There are several ways to improve the convergence of the standard method. This paper suggests a new approach which promises to be very useful for applications in finance. Quasi-Monte Carlo methods use sequences that are deterministic instead of random. These sequences improve convergence and give rise to deterministic error bounds. The method is explained and illustrated with several examples. These examples include complex derivatives such as basket options, Asian options, and energy swaps.Monte Carlo simulation, quasi-random sequences, Faure sequences, numerical finance, derivative valuation
    corecore