200 research outputs found
A study of factors affecting the utility of implicit relevance feedback
Implicit relevance feedback (IRF) is the process by which a search system unobtrusively gathers evidence on searcher interests from their interaction with the system. IRF is a new method of gathering information on user interest and, if IRF is to be used in operational IR systems, it is important to establish when it performs well and when it performs poorly. In this paper we investigate how the use and effectiveness of IRF is affected by three factors: search task complexity, the search experience of the user and the stage in the search. Our findings suggest that all three of these factors contribute to the utility of IRF
Facet-Based Browsing in Video Retrieval: A Simulation-Based Evaluation
In this paper we introduce a novel interactive video retrieval approach which uses sub-needs of an information need for querying and organising the search process. The underlying assumption of this approach is that the search effectiveness will be enhanced when employed for interactive video retrieval. We explore the performance bounds of a faceted system by using the simulated user evaluation methodology on TRECVID data sets and also on the logs of a prior user experiment with the system. We discuss the simulated evaluation strategies employed in our evaluation and the effect on the use of both textual and visual features. The facets are simulated by the use of clustering the video shots using textual and visual features. The experimental results of our study demonstrate that the faceted browser can potentially improve the search effectiveness
A case study of exploiting data mining techniques for an industrial recommender system
This is an electronic version of the paper presented at the 1st International Workshop on Recommender-based Industrial Applications, held in New York on 2009We describe a case study of the exploitation of Data Mining
techniques for creating an industrial recommender system. The
aim of this system is to recommend items of a fashion retail
store chain in Spain, producing leaflets for loyal customers
announcing new products that they are likely to want to
purchase.
Motivated by the fact of having little information about the
customers, we propose to relate demographic attributes of the
users with content attributes of the items. We hypothesise that
the description of users and items in a common content-based
feature space facilitates the identification of those products that
should be recommended to a particular customer.
We present a recommendation framework that builds Decision
Trees for the available demographic attributes. Instead of using
these trees for classification, we use them to extract those
content-based item attributes that are most widespread among
the purchases of users who share the demographic attribute
values of the active user.
We test our recommendation framework on a dataset with oneyear
purchase transaction history. Preliminary evaluations show
that better item recommendations are obtained when using
demographic attributes in a combined way rather than using
them independently.This research was supported by the European Commission
under contracts FP6-027122-SALERO, FP6-033715-MIAUCE
and FP6-045032 SEMEDIA. The expressed content is the view
of the authors but not necessarily the view of SALERO,
MIAUCE and SEMEDIA projects as a whole
BoostFM: Boosted Factorization Machines for Top-N Feature-based Recommendation
Feature-based matrix factorization techniques such as Factorization Machines (FM) have been proven to achieve impressive accuracy for the rating prediction task. However, most common recommendation scenarios are formulated as a top-N item ranking problem with implicit feedback (e.g., clicks, purchases)rather than explicit ratings. To address this problem, with both implicit feedback and feature information, we propose a feature-based collaborative boosting recommender called BoostFM, which integrates boosting into factorization models during the process of item ranking. Specifically, BoostFM is an adaptive boosting framework that linearly combines multiple homogeneous component recommenders, which are repeatedly constructed on the basis of the individual FM model by a re-weighting scheme. Two ways are proposed to efficiently train the component recommenders from the perspectives of both pairwise and listwise Learning-to-Rank (L2R). The properties of our proposed method are empirically studied on three real-world datasets. The experimental results show that BoostFM outperforms a number of state-of-the-art approaches for top-N recommendation
A user-study examining visualization of lifelogs
With continuous advances in the pervasive sensing and lifelogging technologies for the quantified self, users now can record their daily life activities automatically and seamlessly. In the existing lifelogging research, visualization techniques for presenting the lifelogs and evaluating the effectiveness of such techniques from a lifelogger's perspective has not been adequately studied. In this paper, we investigate the effectiveness of four distinct visualization techniques for exploring the lifelogs, which were collected by 22 lifeloggers who volunteered to use a wearable camera and a GPS device simultaneously, for a period of 3 days. Based on a user study with these 22 lifeloggers, which required them to browse through their personal lifelogs, we seek to identify the most effective visualization technique. Our results suggest various ways to augment and improve the visualization of personal lifelogs to enrich the quality of user experience and making lifelogging tools more engaging. We also propose a new visualization feature-drill-down approach with details-on-demand, to make the lifelogging visualization process more meaningful and informative to the lifeloggers
LambdaFM: Learning Optimal Ranking with Factorization Machines Using Lambda Surrogates
State-of-the-art item recommendation algorithms, which apply
Factorization Machines (FM) as a scoring function and
pairwise ranking loss as a trainer (PRFM for short), have
been recently investigated for the implicit feedback based
context-aware recommendation problem (IFCAR). However,
good recommenders particularly emphasize on the accuracy
near the top of the ranked list, and typical pairwise loss functions
might not match well with such a requirement. In this
paper, we demonstrate, both theoretically and empirically,
PRFM models usually lead to non-optimal item recommendation
results due to such a mismatch. Inspired by the success
of LambdaRank, we introduce Lambda Factorization
Machines (LambdaFM), which is particularly intended for
optimizing ranking performance for IFCAR. We also point
out that the original lambda function suffers from the issue
of expensive computational complexity in such settings due
to a large amount of unobserved feedback. Hence, instead
of directly adopting the original lambda strategy, we create
three effective lambda surrogates by conducting a theoretical
analysis for lambda from the top-N optimization perspective.
Further, we prove that the proposed lambda surrogates
are generic and applicable to a large set of pairwise
ranking loss functions. Experimental results demonstrate
LambdaFM significantly outperforms state-of-the-art algorithms
on three real-world datasets in terms of four standard
ranking measures
- …