42 research outputs found

    In vitro activities of tigecycline combined with other antimicrobials against multiresistant Gram-positive and Gram-negative pathogens

    Get PDF
    Objectives To test the activity of tigecycline combined with 16 antimicrobials in vitro against 22 Gram-positive and 55 Gram-negative clinical isolates. Methods Antibiotic interactions were determined by chequerboard and time-kill methods. Results By chequerboard, of 891 organism-drug interactions tested, 97 (11%) were synergistic, 793 (89%) were indifferent and 1 (0.1%) was antagonistic. Among Gram-positive pathogens, most synergisms occurred against Enterococcus spp. (7/11 isolates) with the tigecycline/rifampicin combination. No antagonism was detected. Among Gram-negative organisms, synergism was observed mainly with trimethoprim/sulfamethoxazole against Serratia marcescens (5/5 isolates), Proteus spp. (2/5) and Stenotrophomonas maltophilia (2/5), with aztreonam against S. maltophilia (3/5), with cefepime and imipenem against Enterobacter cloacae (3/5), with ceftazidime against Morganella morganii (3/5), and with ceftriaxone against Klebsiella pneumoniae (3/5). The only case of antagonism occurred against one S. marcescens with the tigecycline/imipenem combination. Selected time-kill assays confirmed the bacteriostatic interactions observed by the chequerboard method. Moreover, they revealed a bactericidal synergism of tigecycline with piperacillin/tazobactam against one penicillin-resistant Streptococcus pneumoniae and with amikacin against Proteus vulgaris. Conclusions Combinations of tigecycline with other antimicrobials produce primarily an indifferent response. Specific synergisms, especially against enterococci and problematic Gram-negative isolates, might be worth investigating in in vitro models and/or in animal models simulating the human environmen

    Efficacy of daptomycin in the treatment of experimental endocarditis due to susceptible and multidrug-resistant enterococci

    Get PDF
    Objectives: Daptomycin was tested in vitro and in rats with experimental endocarditis against the ampicillin-susceptible and vancomycin-susceptible Enterococcus faecalis JH2-2, the vancomycin-resistant (VanA type) mutant of strain JH2-2 (strain JH2-2/pIP819), and the ampicillin-resistant and vancomycin-resistant (VanB type) Enterococcus faecium D366. Methods: Rats with catheter-induced aortic vegetations were treated with doses simulating intravenously kinetics in humans of daptomycin (6 mg/kg every 24 h), amoxicillin (2 g every 6 h), vancomycin (1 g every 12 h) or teicoplanin (12 mg/kg every 12 h). Treatment was started 16 h post-inoculation and continued for 2 days. Results: MICs of daptomycin were 1, 1 and 2 mg/L, respectively, for strains JH2-2, JH2-2/pIP819 and D366. In time-kill studies, daptomycin showed rapid (within 2 h) bactericidal activity against all strains. Daptomycin was highly bound to rat serum proteins (89%). In the presence of 50% rat serum, simulating free concentrations, daptomycin killing was maintained but delayed (6-24 h). In vivo, daptomycin treatment resulted in 10 of 12 (83%), 9 of 11 (82%) and 11 of 12 (91%) culture-negative vegetations in rats infected with strains JH2-2, JH2-2/pIP819 and D366, respectively (P < 0.001 compared to controls). Daptomycin efficacy was comparable to that of amoxicillin and vancomycin for susceptible isolates. Daptomycin, however, was significantly (P < 0.05) more effective than teicoplanin against the glycopeptide-susceptible strain JH2-2 and superior to all comparators against resistant isolates. Conclusions: These results support the use of the newly proposed daptomycin dose of 6 mg/kg every 24 h for treatment of enterococcal infections in human

    Antibiotic Treatment of Experimental Endocarditis Due to Methicillin-Resistant Staphylococcus epidermidis

    Get PDF
    The natural history and treatment of experimental endocarditis due to heterogeneous and homogeneous methicillin-resistant Staphylococcus epidermidis was investigated. Amoxicillin/clavulanate or vancomycin were administered for 3 days via a computerized pump to mimic human drug kinetics in animals. After challenge with the minimum inoculum producing 90% of infections (ID90) , bacteria in the vegetations grew logarithmically for 16 h. Then, bacterial densities stabilized (at ∼108 cfu/g) and growth rates sharply declined. Both regimens cured ⩾60% of endocarditis (due to heterogeneous or homogeneous bacteria) when started 12-16 h after infection, although the bacterial densities in the vegetations had increased by 20 times in between. In contrast, treatment started after 24 h failed in most animals, while bacterial densities had not increased any more. Thus, while both regimens were equivalent, the therapeutic outcome was best predicted by growth rates in the vegetations, not by bacterial densities. These observations highlight the importance of phenotypic tolerance developing in viv

    Vancomycin-intermediate Staphylococcus aureus selected during vancomycin therapy of experimental endocarditis are not detected by culture-based diagnostic procedures and persist after treatment arrest

    Get PDF
    Objectives Laboratory detection of vancomycin-intermediate Staphylococcus aureus (VISA) and their heterogeneous VISA (hVISA) precursors is difficult. Thus, it is possible that vancomycin failures against supposedly vancomycin-susceptible S. aureus are due to undiagnosed VISA or hVISA. We tested this hypothesis in experimental endocarditis. Methods Rats with aortic valve infection due to the vancomycin-susceptible (MIC 2 mg/L), methicillin-resistant S. aureus M1V2 were treated for 2 days with doses of vancomycin that mimicked the pharmacokinetics seen in humans following intravenous administration of 1 g of the drug every 12 h. Half of the treated animals were killed 8 h after treatment arrest and half 3 days thereafter. Population analyses were done directly on vegetation homogenates or after one subculture in drug-free medium to mimic standard diagnostic procedures. Results Vancomycin cured 14 of 26 animals (54%; P < 0.05 versus controls) after 2 days of treatment. When vegetation homogenates were plated directly on vancomycin-containing plates, 6 of 13 rats killed 8 h after treatment arrest had positive cultures, 1 of which harboured hVISA. Likewise, 6 of 13 rats killed 3 days thereafter had positive valve cultures, 5 of which harboured hVISA. However, one subculture of vegetations in drug-free broth was enough to revert all the hVISA phenotypes to the susceptible pattern of the parent. Thus, vancomycin selected for hVISA during therapy of experimental endocarditis due to vancomycin-susceptible S. aureus. These hVISA were associated with vancomycin failure. The hVISA phenotype persisted in vivo, even after vancomycin arrest, but was missed in vitro after a single passage of the vegetation homogenate on drug-free medium. Conclusions hVISA might escape detection in clinical samples if they are subcultured before susceptibility test

    The Impact of Penicillinase on Cefamandole Treatment and Prophylaxis of Experimental Endocarditis Due to Methicillin-Resistant Staphylococcus aureus

    Get PDF
    β-lactams active against methicillin-resistant Staphylococcus aureus (MRSA) must resist penicillinase hydrolysis and bind penicillin-binding protein 2A (PBP 2A). Cefamandole might share these properties. When tested against 2 isogenic pairs of MRSA that produced or did not produce penicillinase, MICs of cefamandole (8-32 mg/L) were not affected by penicillinase, and cefamandole had a ⩾40 times greater PBP 2A affinity than did methicillin. In rats, constant serum levels of 100 mg/L cefamandole successfully treated experimental endocarditis due to penicillinase-negative isolates but failed against penicillinase-producing organisms. This suggested that penicillinase produced in infected vegetations might hydrolyze the drug. Indeed, cefamandole was slowly degraded by penicillinase in vitro. Moreover, its efficacy was restored by combination with sulbactam in vivo. Cefamandole also uniformly prevented MRSA endocarditis in prophylaxis experiments, a setting in which bacteria were not yet clustered in the vegetations. Thus, while cefamandole treatment was limited by penicillinase, the drug was still successful for prophylaxis of experimental MRSA endocarditi

    Importance of Genotypic and Phenotypic Tolerance in the Treatment of Experimental Endocarditis Due to Streptococcus gordonii

    Get PDF
    Genotypic and phenotypic tolerance was studied in penicillin treatment of experimental endocarditis due to nontolerant and tolerant Streptococcus gordonii and to their backcross transformants. The organisms were matched for in vitro and in vivo growth rates. Rats with aortic endocarditis were treated for 3 or 5 days, starting 12, 24, or 48 h after inoculation. When started at 12 h, during fast intravegetation growth, 3 days of treatment cured 80% of the nontolerant parent compared with <30% of the tolerant derivative (P < .005). When started at 24 or 48 h and if intravegetation growth had reached a plateau, 3 days of treatment failed against both bacteria. However, a significant difference between the 2 organisms was restored when treatment was extended to 5 days. Thus, genotypic tolerance conferred a survival advantage in both fast- and slow-growing bacteria, demonstrating that the in vitro-defined tolerant phenotype also carried the risk of treatment failure in viv

    MsrR contributes to cell surface characteristics and virulence in Staphylococcus aureus

    Get PDF
    MsrR, a factor contributing to methicillin resistance in Staphylococcus aureus, belongs to the LytR-CpsA-Psr family of cell envelope-associated proteins. Deletion of msrR increased cell size and aggregation, and altered envelope properties, leading to a temporary reduction in cell surface hydrophobicity, diminished colony-spreading ability, and an increased susceptibility to Congo red. The reduced phosphorus content of purified cell walls of the msrR mutant suggested a reduction in wall teichoic acids, which may explain some of the observed phenotypes. Microarray analysis of the msrR deletion mutant revealed only minor changes in the global transcriptome, suggesting that MsrR has structural rather than regulatory functions. Importantly, virulence of the msrR mutant was decreased in a nematode-killing assay as well as in rat experimental endocarditis. MsrR is therefore likely to play a role in cell envelope maintenance, cell separation, and pathogenicity of S. aureu

    Molecular Characterization of a Streptococcus gallolyticus Genomic Island Encoding a Pilus Involved in Endocarditis

    Get PDF
    Background. Streptococcus gallolyticus is a causative agent of infective endocarditis associated with colon cancer. Genome sequence of strain UCN34 revealed the existence of 3 pilus loci (pil1, pil2, and pil3). Pili are long filamentous structures playing a key role as adhesive organelles in many pathogens. The pil1 locus encodes 2 LPXTG proteins (Gallo2178 and Gallo2179) and 1 sortase C (Gallo2177). Gallo2179 displaying a functional collagen-binding domain was referred to as the adhesin, whereas Gallo2178 was designated as the major pilin. Methods. S. gallolyticus UCN34, Pil1+ and Pil1−, expressing various levels of pil1, and recombinant Lactococcus lactis strains, constitutively expressing pil1, were studied. Polyclonal antibodies raised against the putative pilin subunits Gallo2178 and Gallo2179 were used in immunoblotting and immunogold electron microscopy. The role of pil1 was tested in a rat model of endocarditis. Results. We showed that the pil1 locus (gallo2179-78-77) forms an operon differentially expressed among S. gallolyticus strains. Short pilus appendages were identified both on the surface of S. gallolyticus UCN34 and recombinant L. lactis-expressing pil1. We demonstrated that Pil1 pilus is involved in binding to collagen, biofilm formation, and virulence in experimental endocarditis. Conclusions. This study identifies Pil1 as the first virulence factor characterized in S. gallolyticu

    Fosfomycin plus Beta-lactams: Synergistic Bactericidal Combinations in Methicillin-resistant (MRSA) and Glycopeptide-Intermediate Resistant (GISA) Staphylococcus aureus Experimental Endocarditis

    Full text link
    The urgent need of effective therapies for methicillin-resistant Staphylococcus aureus (MRSA) infective endocarditis (IE) is a cause of concern. We aimed to ascertain the in vitro and in vivo activity of the older antibiotic fosfomycin combined with different beta-lactams against MRSA and glycopeptide-intermediate-resistant S. aureus (GISA) strains. Time-kill tests with 10 isolates showed that fosfomycin plus imipenem (FOF+IPM) was the most active evaluated combination. In an aortic valve IE model with two strains (MRSA-277H and GISA-ATCC 700788), the following intravenous regimens were compared: fosfomycin (2 g every 8 h [q8h]) plus imipenem (1 g q6h) or ceftriaxone (2 g q12h) (FOF+CRO) and vancomycin at a standard dose (VAN-SD) (1 g q12h) and a high dose (VAN-HD) (1 g q6h). Whereas a significant reduction of MRSA-227H load in the vegetations (veg) was observed with FOF+IPM compared with VAN-SD (0 [interquartile range [IQR], 0 to 1] versus 2 [IQR, 0 to 5.1] log CFU/g veg; P = 0.01), no statistical differences were found with VAN-HD. In addition, FOF+IPM sterilized more vegetations than VAN-SD (11/15 [73%] versus 5/16 [31%]; P = 0.02). The GISA-ATCC 700788 load in the vegetations was significantly lower after FOF+IPM or FOF+CRO treatment than with VAN-SD (2 [IQR, 0 to 2] and 0 [IQR, 0 to 2] versus 6.5 [IQR, 2 to 6.9] log CFU/g veg; P < 0.01). The number of sterilized vegetations after treatment with FOF+CRO was higher than after treatment with VAN-SD or VAN-HD (8/15 [53%] versus 4/20 [20%] or 4/20 [20%]; P = 0.03). To assess the effect of FOF+IPM on penicillin binding protein (PBP) synthesis, molecular studies were performed, with results showing that FOF+IPM treatment significantly decreased PBP1, PBP2 (but not PBP2a), and PBP3 synthesis. These results allow clinicians to consider the use of FOF+IPM or FOF+CRO to treat MRSA or GISA IE.Copyright © 2015, American Society for Microbiology. All Rights Reserved

    Bloodstream and endovascular infections due to Abiotrophia defectiva and Granulicatella species

    Get PDF
    BACKGROUND: Abiotrophia and Granulicatella species, previously referred to as nutritionally variant streptococci (NVS), are significant causative agents of endocarditis and bacteraemia. In this study, we reviewed the clinical manifestations of infections due to A. defectiva and Granulicatella species that occurred at our institution between 1998 and 2004. METHODS: The analysis included all strains of NVS that were isolated from blood cultures or vascular graft specimens. All strains were identified by 16S rRNA sequence analysis. Patients' medical charts were reviewed for each case of infection. RESULTS: Eleven strains of NVS were isolated during the 6-year period. Identification of the strains by 16S rRNA showed 2 genogroups: Abiotrophia defectiva (3) and Granulicatella adiacens (6) or "para-adiacens" (2). The three A. defectiva strains were isolated from immunocompetent patients with endovascular infections, whereas 7 of 8 Granulicatella spp. strains were isolated from immunosuppressed patients, mainly febrile neutropenic patients. We report the first case of "G. para-adiacens" bacteraemia in the setting of febrile neutropenia. CONCLUSION: We propose that Granulicatella spp. be considered as a possible agent of bacteraemia in neutropenic patients
    corecore