87 research outputs found

    Excitonic Resonances in Coherent Anti-Stokes Raman Scattering from Single-Walled Carbon Nanotubes

    Get PDF
    In this work we investigate the role of exciton resonances in coherent anti-Stokes Raman scattering (er-CARS) in single walled carbon nanotubes (SWCNTs). We drive the nanotube system in simultaneous phonon and excitonic resonances, where we observe a superior enhancement by orders of magnitude exceeding non-resonant cases. We investigated the resonant effects in five (n,m)(n,m) chiralities and find that the er-CARS intensity varies drastically between different nanotube species. The experimental results are compared with a perturbation theory model. Finally, we show that such giant resonant non-linear signals enable rapid mapping and local heating of individualized CNTs, suggesting easy tracking of CNTs for future nanotoxology studies and therapeutic application in biological tissues

    Excitonic Resonances in Coherent Anti-Stokes Raman Scattering from Single Wall Carbon Nanotubes

    Full text link
    In this work we investigate the role of exciton resonances in coherent anti-Stokes Raman scattering (er-CARS) in single walled carbon nanotubes (SWCNTs). We drive the nanotube system in simultaneous phonon and excitonic resonances, where we observe a superior enhancement by orders of magnitude exceeding non-resonant cases. We investigated the resonant effects in five (n,m)(n,m) chiralities and find that the er-CARS intensity varies drastically between different nanotube species. The experimental results are compared with a perturbation theory model. Finally, we show that such giant resonant non-linear signals enable rapid mapping and local heating of individualized CNTs, suggesting easy tracking of CNTs for future nanotoxology studies and therapeutic application in biological tissues.Comment: 17 pages, 6 figure

    Dielectric Screening inside Carbon Nanotubes

    Get PDF
    Dielectric screening plays a vital role in determining physical properties at the nanoscale and affects our ability to detect and characterize nanomaterials using optical techniques. We study how dielectric screening changes electromagnetic fields and many-body effects in nanostructures encapsulated inside carbon nanotubes. First, we show that metallic outer walls reduce the scattering intensity of the inner tube by 2 orders of magnitude compared to that of air-suspended inner tubes, in line with our local field calculations. Second, we find that the dielectric shift of the optical transition energies in the inner walls is greater when the outer tube is metallic than when it is semiconducting. The magnitude of the shift suggests that the excitons in small-diameter inner metallic tubes are thermally dissociated at room temperature if the outer tube is also metallic, and in essence, we observe band-to-band transitions in thin metallic double-walled nanotubes

    Dielectric Screening Inside Carbon Nanotubes

    Full text link
    Dielectric screening plays a vital role for the physical properties in the nanoscale and also alters our ability to detect and characterize nanomaterials by optical techniques. We study the dielectric screening inside of carbon nanotubes and how it changes electromagnetic fields and many-body effects for encapsulated nanostructures. First, we show that the local electric field inside a nanotube is altered by one-dimensional screening with dramatic effects on the effective Raman scattering efficiency of the encapsulated species for metallic walls. The scattering intensity of the inner tube is two orders of magnitude weaker than for the tube in air, which is nicely reproduced by local field calculations. Secondly, we find that the optical transition energies of the inner nanotubes shift to lower energies compared to a single-walled carbon nanotubes of the same chirality. The shift is higher if the outer tube is metallic than when it is semiconducting. The magnitude of the shift suggests that the excitons of small diameter inner metallic tubes are thermally dissociated at room temperate if the outer tube is also metallic and in essence we observe band-to-band transitions.Comment: main: 19 pages, 6 figures supporting: 8 pages, 3 figure

    Dielectric Screening inside Carbon Nanotubes

    Get PDF
    Dielectric screening plays a vital role in determining physical properties at the nanoscale and affects our ability to detect and characterize nanomaterials using optical techniques. We study how dielectric screening changes electromagnetic fields and many-body effects in nanostructures encapsulated inside carbon nanotubes. First, we show that metallic outer walls reduce the scattering intensity of the inner tube by 2 orders of magnitude compared to that of air-suspended inner tubes, in line with our local field calculations. Second, we find that the dielectric shift of the optical transition energies in the inner walls is greater when the outer tube is metallic than when it is semiconducting. The magnitude of the shift suggests that the excitons in small-diameter inner metallic tubes are thermally dissociated at room temperature if the outer tube is also metallic, and in essence, we observe band-to-band transitions in thin metallic double-walled nanotubes

    Exciton decay dynamics in individual carbon nanotubes at room temperature

    Get PDF
    We studied the exciton decay dynamics of individual semiconducting single-walled carbon nanotubes at room temperature using time-resolved photoluminescence spectroscopy. The photoluminescence decay from nanotubes of the same (n,m) type follows a single exponential decay function, however, with lifetimes varying between about 1 and 40 ps from nanotube to nanotube. A correlation between broad photoluminescence spectra and short lifetimes was found and explained by defects promoting both nonradiative decay and vibronic dephasing

    Visualizing the Local Optical Response of Semiconducting Carbon Nanotubes to DNA-Wrapping

    Get PDF
    We studied the local optical response of semiconducting single-walled carbon nanotubes to wrapping by DNA segments using high resolution tip-enhanced near-field microscopy. Photoluminescence (PL) near-field images of single nanotubes reveal large DNA-wrapping-induced red shifts of the exciton energy that are two times higher than indicated by spatially averaging confocal microscopy. Near-field PL spectra taken along nanotubes feature two distinct PL bands resulting from DNA-wrapped and unwrapped nanotube segments. The transition between the two energy levels occurs on a length scale smaller than our spatial resolution of about 15 nm
    • …
    corecore