4 research outputs found

    Multi-Ancestry GWAS reveals excitotoxicity associated with outcome after ischaemic stroke

    Get PDF
    Funding: This work was supported by grants from the Emergency Medicine Foundation Career Development Grant; AHA Mentored Clinical & Population Research Award (14CRP18860027); NIH/NINDS-R01-NS085419 (C.C., J.M.L.); NIH/NINDS-R37-NS107230, NIH/NINDS U24-NS107230 (J.M.L.); NIH/NINDS-K23-NS099487 (L.H.); NIH/NIA-K99-AG062723 (L.I.); Barnes-Jewish Hospital Foundation (J.M.L.); Biogen (C.C., J.M.L.); Bright Focus Foundation, US Department of Defense, Helsinki University Central Hospital; Finnish Medical Foundation; Finland government subsidiary funds; Spanish Ministry of Science and Innovation; Instituto de Salud Carlos III (grants ‘Registro BASICMAR’ Funding for Research in Health (PI051737), ‘GWALA project’ from Fondos de Investigación Sanitaria ISC III (PI10/02064, PI12/01238 and PI15/00451), JR18/00004); Fondos FEDER/EDRF Red de Investigación Cardiovascular (RD12/0042/0020); Fundació la Marató TV3; Genestroke Consortium (76/C/2011); Recercaixa’13 (JJ086116). Tomás Sobrino (CPII17/00027), Francisco Campos (CPII19/00020) and Israel Fernandez are supported by Miguel Servet II Program from Instituto de Salud Carlos III and Fondos FEDER. I.F. is also supported by Maestro project (PI18/01338) and Pre-test project (PMP15/00022) from Instituto de Salud Carlos III and Fondos Feder, Agaur; and Epigenesis project from Marató TV3 Foundation. J.C., J.M., A.D., J.M.-F., J.A. and I.F. are supported by Invictus plus Network (RD16/0019) from Instituto de Salud Carlos III and Fondos Feder. Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP-2013/07559-3) (I.L.-C.), Sigrid Juselius Foundation. The MEGASTROKE project received funding from sources specified at http://www.megastroke.org/acknowledgments.html. B.S., B.A. and F.S. are supported by NIH awards NS097000, NS101718, NS075035, NS079153 and NS106950.During the first hours after stroke onset, neurological deficits can be highly unstable: some patients rapidly improve, while others deteriorate. This early neurological instability has a major impact on long-term outcome. Here, we aimed to determine the genetic architecture of early neurological instability measured by the difference between the National Institutes of Health Stroke Scale (NIHSS) within 6h of stroke onset and NIHSS at 24h.  A total of 5876 individuals from seven countries (Spain, Finland, Poland, USA, Costa Rica, Mexico and Korea) were studied using a multi-ancestry meta-analyses. We found that 8.7% of NIHSS at 24h of variance was explained by common genetic variations, and also that early neurological instability has a different genetic architecture from that of stroke risk. Eight loci (1p21.1, 1q42.2, 2p25.1, 2q31.2, 2q33.3, 5q33.2, 7p21.2 and 13q31.1) were genome-wide significant and explained 1.8% of the variability suggesting that additional variants influence early change in neurological deficits. We used functional genomics and bioinformatic annotation to identify the genes driving the association from each locus. Expression quantitative trait loci mapping and summary data-based Mendelian randomization indicate that ADAM23 (log Bayes factor = 5.41) was driving the association for 2q33.3. Gene-based analyses suggested that GRIA1 (log Bayes factor = 5.19), which is predominantly expressed in the brain, is the gene driving the association for the 5q33.2 locus. These analyses also nominated GNPAT (log Bayes factor = 7.64) ABCB5 (log Bayes factor = 5.97) for the 1p21.1 and 7p21.1 loci. Human brain single-nuclei RNA-sequencing indicates that the gene expression of ADAM23 and GRIA1 is enriched in neurons. ADAM23, a presynaptic protein and GRIA1, a protein subunit of the AMPA receptor, are part of a synaptic protein complex that modulates neuronal excitability.  These data provide the first genetic evidence in humans that excitotoxicity may contribute to early neurological instability after acute ischaemic stroke.PostprintPeer reviewe

    Risk of COVID-19 after natural infection or vaccinationResearch in context

    No full text
    Summary: Background: While vaccines have established utility against COVID-19, phase 3 efficacy studies have generally not comprehensively evaluated protection provided by previous infection or hybrid immunity (previous infection plus vaccination). Individual patient data from US government-supported harmonized vaccine trials provide an unprecedented sample population to address this issue. We characterized the protective efficacy of previous SARS-CoV-2 infection and hybrid immunity against COVID-19 early in the pandemic over three-to six-month follow-up and compared with vaccine-associated protection. Methods: In this post-hoc cross-protocol analysis of the Moderna, AstraZeneca, Janssen, and Novavax COVID-19 vaccine clinical trials, we allocated participants into four groups based on previous-infection status at enrolment and treatment: no previous infection/placebo; previous infection/placebo; no previous infection/vaccine; and previous infection/vaccine. The main outcome was RT-PCR-confirmed COVID-19 >7–15 days (per original protocols) after final study injection. We calculated crude and adjusted efficacy measures. Findings: Previous infection/placebo participants had a 92% decreased risk of future COVID-19 compared to no previous infection/placebo participants (overall hazard ratio [HR] ratio: 0.08; 95% CI: 0.05–0.13). Among single-dose Janssen participants, hybrid immunity conferred greater protection than vaccine alone (HR: 0.03; 95% CI: 0.01–0.10). Too few infections were observed to draw statistical inferences comparing hybrid immunity to vaccine alone for other trials. Vaccination, previous infection, and hybrid immunity all provided near-complete protection against severe disease. Interpretation: Previous infection, any hybrid immunity, and two-dose vaccination all provided substantial protection against symptomatic and severe COVID-19 through the early Delta period. Thus, as a surrogate for natural infection, vaccination remains the safest approach to protection. Funding: National Institutes of Health
    corecore