50 research outputs found

    Spin Nomenclature for Semiconductors and Magnetic Metals

    Full text link
    The different conventions used in the semiconductor and magnetic metals communities can cause confusion in the context of spin polarization and transport in simple heterostructures. In semiconductors, terminology is based on the orientation of the electron spin, while in magnetic metals it is based on the orientation of the moment. In the rapidly expanding field of spintronics, where both semiconductors and metallic metals are important, some commonly used terms ("spin-up," "majority spin") can have different meanings. Here, we clarify nomenclature relevant to spin transport and optical polarization by relating the common physical observables and "definitions" of spin polarization to the fundamental concept of conservation of angular momentum within a well-defined reference frame.Comment: 3 pages, 2 figures, 16 reference

    Electrical Detection of Charge-to- spin and Spin-to-Charge Conversion in a Topological Insulator Bi2Te3 Using BN/Al2O3 Hybrid Tunnel Barrier

    Get PDF
    One of the most striking properties of three-dimensional topological insulators (TIs) is spin-momentum locking, where the spin is locked at right angles to momentum and hence an unpolarized charge current creates a net spin polarization. Alternatively, if a net spin is injected into the TI surface state system, it is distinctively associated with a unique carrier momentum and hence should generate a charge accumulation, as in the so-called inverse Edelstein effect. Here using a Fe/Al2O3/BN tunnel barrier, we demonstrate both effects in a single device in Bi2Te3: the electrical detection of the spin accumulationgenerated by an unpolarized current flowing through the surface states, and that of the charge accumulation generated by spins injected into the surface state system. This work is the first to utilize BN as part of a hybrid tunnel barrier on TI, where we observed a high spin polarization of 93% for the TI surfaces states. The reverse spin-to-charge measurement is an independent confirmation that spin and momentum are locked in the surface states of TI, and offers additional avenues for spin manipulation. It further demonstrates the robustness and versatility of electrical access to the spin system within TI surface states, an important step towards its utilization in TI-based spintronics devices

    Modelling of Optical Detection of Spin-Polarized Carrier Injection into Light-Emitting Devices

    Get PDF
    We investigate the emission of multimodal polarized light from Light Emitting Devices due to spin-aligned carriers injection. The results are derived through operator Langevin equations, which include thermal and carrier-injection fluctuations, as well as non-radiative recombination and electronic g-factor temperature dependence. We study the dynamics of the optoelectronic processes and show how the temperature-dependent g-factor and magnetic field affect the polarization degree of the emitted light. In addition, at high temperatures, thermal fluctuation reduces the efficiency of the optoelectronic detection method for measuring spin-polarization degree of carrier injection into non-magnetic semicondutors.Comment: 15 pages, 7 figures, replaced by revised version. To appear in Phys. Rev.

    Electron Spin Injection at a Schottky Contact

    Full text link
    We investigate theoretically electrical spin injection at a Schottky contact between a spin-polarized electrode and a non-magnetic semiconductor. Current and electron density spin-polarizations are discussed as functions of barrier energy and semiconductor doping density. The effect of a spin-dependent interface resistance that results from a tunneling region at the contact/semiconductor interface is described. The model can serve as a guide for designing spin-injection experiments with regard to the interface properties and device structure.Comment: 4 pages, 4 figure

    Spin filtering and magnetoresistance in ballistic tunnel junctions

    Full text link
    We theoretically investigate magnetoresistance (MR) effects in connection with spin filtering in quantum-coherent transport through tunnel junctions based on non-magnetic/semimagnetic heterostructures. We find that spin filtering in conjunction with the suppression/enhancement of the spin-dependent Fermi seas in semimagnetic contacts gives rise to (i) spin-split kinks in the MR of single barriers and (ii) a robust beating pattern in the MR of double barriers with a semimagnetic well. We believe these are unique signatures for quantum filtering.Comment: Added references + corrected typo

    Spin oscillations in transient diffusion of a spin pulse in n-type semiconductor quantum wells

    Full text link
    By studying the time and spatial evolution of a pulse of the spin polarization in nn-type semiconductor quantum wells, we highlight the importance of the off-diagonal spin coherence in spin diffusion and transport. Spin oscillations and spin polarization reverse along the the direction of spin diffusion in the absence of the applied magnetic field are predicted from our investigation.Comment: 5 pages, 4 figures, accepted for publication in PR

    Spin-Polarized Electron Transport at Ferromagnet/Semiconductor Schottky Contacts

    Full text link
    We theoretically investigate electron spin injection and spin-polarization sensitive current detection at Schottky contacts between a ferromagnetic metal and an n-type or p-type semiconductor. We use spin-dependent continuity equations and transport equations at the drift-diffusion level of approximation. Spin-polarized electron current and density in the semiconductor are described for four scenarios corresponding to the injection or the collection of spin polarized electrons at Schottky contacts to n-type or p-type semiconductors. The transport properties of the interface are described by a spin-dependent interface resistance, resulting from an interfacial tunneling region. The spin-dependent interface resistance is crucial for achieving spin injection or spin polarization sensitivity in these configurations. We find that the depletion region resulting from Schottky barrier formation at a metal/semiconductor interface is detrimental to both spin injection and spin detection. However, the depletion region can be tailored using a doping density profile to minimize these deleterious effects. For example, a heavily doped region near the interface, such as a delta-doped layer, can be used to form a sharp potential profile through which electrons tunnel to reduce the effective Schottky energy barrier that determines the magnitude of the depletion region. The model results indicate that efficient spin-injection and spin-polarization detection can be achieved in properly designed structures and can serve as a guide for the structure design.Comment: RevTex

    Electric-field dependent spin diffusion and spin injection into semiconductors

    Full text link
    We derive a drift-diffusion equation for spin polarization in semiconductors by consistently taking into account electric-field effects and nondegenerate electron statistics. We identify a high-field diffusive regime which has no analogue in metals. In this regime there are two distinct spin diffusion lengths. Furthermore, spin injection from a ferromagnetic metal into a semiconductor is enhanced by several orders of magnitude and spins can be transported over distances much greater than the low-field spin diffusion length.Comment: 5 pages, 3 eps figure

    Spin injection through the depletion layer: a theory of spin-polarized p-n junctions and solar cells

    Get PDF
    A drift-diffusion model for spin-charge transport in spin-polarized {\it p-n} junctions is developed and solved numerically for a realistic set of material parameters based on GaAs. It is demonstrated that spin polarization can be injected through the depletion layer by both minority and majority carriers, making all-semiconductor devices such as spin-polarized solar cells and bipolar transistors feasible. Spin-polarized {\it p-n} junctions allow for spin-polarized current generation, spin amplification, voltage control of spin polarization, and a significant extension of spin diffusion range.Comment: 4 pages, 3 figure

    Structural and magnetic properties of Fe/ZnSe(001) interfaces

    Full text link
    We have performed first principles electronic structure calculations to investigate the structural and magnetic properties of Fe/ZnSe(001) interfaces. Calculations involving full geometry optimizations have been carried out for a broad range of thickness of Fe layers(0.5 monolayer to 10 monolayers) on top of a ZnSe(001) substrate. Both Zn and Se terminated interfaces have been explored. Total energy calculations show that Se segregates at the surface which is in agreement with recent experiments. For both Zn and Se terminations, the interface Fe magnetic moments are higher than the bulk bcc Fe moment. We have also investigated the effect of adding Fe atoms on top of a reconstructed ZnSe surface to explore the role of reconstruction of semiconductor surfaces in determining properties of metal-semiconductor interfaces. Fe breaks the Se dimer bond formed for a Se-rich (2x1) reconstructed surface. Finally, we looked at the reverse growth i.e. growth of Zn and Se atoms on a bcc Fe(001) substrate to investigate the properties of the second interface of a magnetotunnel junction. The results are in good agreement with the theoretical and experimental results, wherever available.Comment: 7 pages, 8 figures, accepted for publication in PR
    corecore