510 research outputs found

    Effect of previous-winter mortality on the association between summer temperature and mortality in South Korea.

    Get PDF
    BACKGROUND: It has recently been postulated that low mortality levels in the previous winter may increase the proportion of vulnerable individuals in the pool of people at risk of heat-related death during the summer months. OBJECTIVES: We explored the sensitivity of heat-related mortality in summer (June-August) to mortality in the previous winter (December-February) in Seoul, Daegu, and Incheon in South Korea, from 1992 through 2007, excluding the summer of 1994. METHODS: Poisson regression models adapted for time-series data were used to estimate associations between a 1 °C increase in average summer temperature (on the same day and the previous day) above thresholds specific for city, age, and cause of death, and daily mortality counts. Effects were estimated separately for summers preceded by winters with low and high mortality, with adjustment for secular trends. RESULTS: Temperatures above city-specific thresholds were associated with increased mortality in all three cities. Associations were stronger in summers preceded by winters with low versus high mortality levels for all nonaccidental deaths and, to a lesser extent, among persons ≥ 65 years of age. Effect modification by previous-winter mortality was not evident when we restricted deaths to cardiovascular disease outcomes in Seoul. CONCLUSIONS: Our results suggest that low winter all-cause mortality leads to higher mortality during the next summer. Evidence of a relation between increased summer heat-related mortality and previous wintertime deaths has the potential to inform public health efforts to mitigate effects of hot weather

    The analysis of oral microbial communities of wild-type and toll-like receptor 2-deficient mice using a 454 GS FLX Titanium pyrosequencer

    Get PDF
    Background: Although mice have long served as an animal model for periodontitis, information on the composition of their indigenous oral microbiota is limited. The aim of the current study was to characterize mouse oral bacterial flora by applying extensive parallel pyrosequencing using the latest model pyrosequencer, a Roche/454 Genome Sequencer FLX Titanium. In addition, the effect of Toll-like receptor (TLR) 2 deficiency on oral microbiota was evaluated. Results: Eight oral bacterial communities of wild-type (n = 4) and TLR2 knock-out (n = 4) C57BL/6 mice were characterized by analyzing 80,046 reads of 16S rRNA genes obtained by pyrosequencing. Excluding the PCR primers, the average length of each sequencing product was 443 bp. The average species richness of the murine oral bacterial communities was estimated to be about 200, but the communities were dominated by only two main phyla and several species. Therefore, the bacterial communities were relatively simple. The bacterial composition of the murine oral microbiota was significantly different from that of humans, and the lack of TLR2 had a negligible effect on the murine oral microbiota. Conclusion: Pyrosequencing using the Roche/454 FLX Titanium successfully characterized mouse oral bacterial communities. The relatively simple oral bacterial communities of mice were not affected by TLR2 deficiency. These findings will provide a basis for future studies on the role of periodontal pathogens in the murine model of periodontitis.This study was supported by grants R13-2008-008-01003-0 from the Korea Science and Engineering Foundation.

    Large-Scale Genomics Reveals the Genetic Characteristics of Seven Species and Importance of Phylogenetic Distance for Estimating Pan-Genome Size

    Get PDF
    For more than a decade, pan-genome analysis has been applied as an effective method for explaining the genetic contents variation of prokaryotic species. However, genomic characteristics and detailed structures of gene pools have not been fully clarified, because most studies have used a small number of genomes. Here, we constructed pan-genomes of seven species in order to elucidate variations in the genetic contents of >27,000 genomes belonging to Streptococcus pneumoniae, Staphylococcus aureus subsp. aureus, Salmonella enterica subsp. enterica, Escherichia coli and Shigella spp., Mycobacterium tuberculosis complex, Pseudomonas aeruginosa, and Acinetobacter baumannii. This work showed the pan-genomes of all seven species has open property. Additionally, systematic evaluation of the characteristics of their pan-genome revealed that phylogenetic distance provided valuable information for estimating the parameters for pan-genome size among several models including Heaps' law. Our results provide a better understanding of the species and a solution to minimize sampling biases associated with genome-sequencing preferences for pathogenic strains.

    Enhanced Electrochemical Performances of Hollow-Structured N-Doped Carbon Derived from a Zeolitic Imidazole Framework (ZIF-8) Coated by Polydopamine as an Anode for Lithium-Ion Batteries

    Get PDF
    Doping heteroatoms such as nitrogen (N) and boron (B) into the framework of carbon materials is one of the most efficient methods to improve the electrical performance of carbon-based electrodes. In this study, N-doped carbon has been facilely synthesized using a ZIF-8/polydopamine precursor. The polyhedral structure of ZIF-8 and the effective surface-coating capability of dopamine enabled the formation of N-doped carbon with a hollow structure. The ZIF-8 polyhedron served as a sacrificial template for hollow structures, and dopamine participated as a donor of the nitrogen element. When compared to ZIF-8-derived carbon, the HSNC electrode showed an improved reversible capacity of approximately 1398 mAh·g−1 after 100 cycles, with excellent cycling retention at a voltage range of 0.01 to 3.0 V using a current density of 0.1 A·g−1

    2H and 27Al Solid-State NMR Study of the Local Environments in Al-Doped 2-Line Ferrihydrite, Goethite, and Lepidocrocite.

    Get PDF
    Although substitution of aluminum into iron oxides and oxyhydroxides has been extensively studied, it is difficult to obtain accurate incorporation levels. Assessing the distribution of dopants within these materials has proven especially challenging because bulk analytical techniques cannot typically determine whether dopants are substituted directly into the bulk iron oxide or oxyhydroxide phase or if they form separate, minor phase impurities. These differences have important implications for the chemistry of these iron-containing materials, which are ubiquitous in the environment. In this work, 27Al and 2H NMR experiments are performed on series of Al-substituted goethite, lepidocrocite, and 2-line ferrihydrite in order to develop an NMR method to track Al substitution. The extent of Al substitution into the structural frameworks of each compound is quantified by comparing quantitative 27Al MAS NMR results with those from elemental analysis. Magnetic measurements are performed for the goethite series to compare with NMR measurements. Static 27Al spin-echo mapping experiments are used to probe the local environments around the Al substituents, providing clear evidence that they are incorporated into the bulk iron phases. Predictions of the 2H and 27Al NMR hyperfine contact shifts in Al-doped goethite and lepidocrocite, obtained from a combined first-principles and empirical magnetic scaling approach, give further insight into the distribution of the dopants within these phases.J.K., A.J.I., D.M. and N.P. were supported by an NSF grant collaborative research grant in chemistry CHE0714183. An allocation of time upon the NANO computer cluster at the Center for Functional Nanomaterials, Brookhaven National Laboratory, U.S.A., which is supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886 is also acknowledged. D.S.M. and C.P.G. thank the EPSRC and the EU-ERC for support.This is the final version of the article. It first appeared from the American Chemical Society via http://dx.doi.org/10.1021/acs.chemmater.5b0085

    Large-Scale Genomics Reveals the Genetic Characteristics of Seven Species and Importance of Phylogenetic Distance for Estimating Pan-Genome Size

    Get PDF
    For more than a decade, pan-genome analysis has been applied as an effective method for explaining the genetic contents variation of prokaryotic species. However, genomic characteristics and detailed structures of gene pools have not been fully clarified, because most studies have used a small number of genomes. Here, we constructed pan-genomes of seven species in order to elucidate variations in the genetic contents of >27,000 genomes belonging to Streptococcus pneumoniae, Staphylococcus aureus subsp. aureus, Salmonella enterica subsp. enterica, Escherichia coli and Shigella spp., Mycobacterium tuberculosis complex, Pseudomonas aeruginosa, and Acinetobacter baumannii. This work showed the pan-genomes of all seven species has open property. Additionally, systematic evaluation of the characteristics of their pan-genome revealed that phylogenetic distance provided valuable information for estimating the parameters for pan-genome size among several models including Heaps’ law. Our results provide a better understanding of the species and a solution to minimize sampling biases associated with genome-sequencing preferences for pathogenic strains

    Distinctive Phyllosphere bacterial communities in tropical trees.

    Get PDF
    Recent work has suggested that in temperate and subtropical trees, leaf surface bacterial communities are distinctive to each individual tree species and dominated by Alpha and Gammaproteobacteria. In order to understand how general this pattern is, we studied the phyllosphere bacterial community on leaves of six species of tropical trees at a rainforest arboretum in Malaysia. This represents the first detailed study of 'true' tropical lowland tree phyllosphere communities. Leaf surface DNA was extracted and pyrosequenced targeting the V1-V3 region of 16S rRNA gene. As was previously found in temperate and subtropical trees, each tree species had a distinctive bacterial community on its leaves, clustering separately from other tree species in an ordination analysis. Bacterial communities in the phyllosphere were unique to plant leaves in that very few operational taxonomic units (0.5%) co-occurred in the surrounding soil environment. A novel and distinctive aspect of tropical phyllosphere communities is that Acidobacteria were one of the most abundant phyla across all samples (on average, 17%), a pattern not previously recognized. Sequences belonging to Acidobacteria were classified into subgroups 1-6 among known 24 subdivisions, and subgroup 1 (84%) was the most abundant group, followed by subgroup 3 (15%). The high abundance of Acidobacteria on leaves of tropical trees indicates that there is a strong relationship between host plants and Acidobacteria in tropical rain forest, which needs to be investigated further. The similarity of phyllosphere bacterial communities amongst the tree species sampled shows a significant tendency to follow host plant phylogeny, with more similar communities on more closely related hosts

    Telomere maintenance through recruitment of internal genomic regions

    Get PDF
    Cells surviving crisis are often tumorigenic and their telomeres are commonly maintained through the reactivation of telomerase. However, surviving cells occasionally activate a recombination-based mechanism called alternative lengthening of telomeres (ALT). Here we establish stably maintained survivors in telomerase-deleted Caenorhabditis elegans that escape from sterility by activating ALT. ALT survivors trans-duplicate an internal genomic region, which is already cis-duplicated to chromosome ends, across the telomeres of all chromosomes. These 'Template for ALT' (TALT) regions consist of a block of genomic DNA flanked by telomere-like sequences, and are different between two genetic background. We establish a model that an ancestral duplication of a donor TALT region to a proximal telomere region forms a genomic reservoir ready to be incorporated into telomeres on ALT activation.
    corecore