84,878 research outputs found

    Noise figure measurement concept for acoustic amplifiers

    Get PDF
    Optimum length buffer crystals are used with an amplification section for measuring the noise figure for acoustic amplifiers. Measuring the time required to saturate with noise a signal, which is reflected back and forth in the circuit, gives a direct measurement of the amplifiers noise figure

    Experimental study of one- and two-component low-turbulence confined coaxial flows

    Get PDF
    Fluid mechanics experiments to investigate methods for reducing mixing between confined coaxial flows in cylindrical chambers for application to open-cycle gaseous-core nuclear rocket

    Mass and Momentum Turbulent Transport Experiments with Confined Coaxial Jets

    Get PDF
    Downstream mixing of coaxial jets discharging in an expanded duct was studied to obtain data for the evaluation and improvement of turbulent transport models currently used in a variety of computational procedures throughout the propulsion community for combustor flow modeling. Flow visualization studies showed four major shear regions occurring; a wake region immediately downstream of the inlet jet inlet duct; a shear region further downstream between the inner and annular jets; a recirculation zone; and a reattachment zone. A combination of turbulent momentum transport rate and two velocity component data were obtained from simultaneous measurements with a two color laser velocimeter (LV) system. Axial, radial and azimuthal velocities and turbulent momentum transport rate measurements in the r-z and r-theta planes were used to determine the mean value, second central moment (or rms fluctuation from mean), skewness and kurtosis for each data set probability density function (p.d.f.). A combination of turbulent mass transport rate, concentration and velocity data were obtained system. Velocity and mass transport in all three directions as well as concentration distributions were used to obtain the mean, second central moments, skewness and kurtosis for each p.d.f. These LV/LIF measurements also exposed the existence of a large region of countergradient turbulent axial mass transport in the region where the annular jet fluid was accelerating the inner jet fluid

    Thermodynamic and transport properties of fluids and selected solids for cryogenic applications Summary report, 1 Dec. 1965 - 1 Nov. 1970

    Get PDF
    Summary data on thermodynamic and transport properties of fluids and solids for cryogenic application

    Coolant passage heat transfer with rotation

    Get PDF
    In current and advanced gas turbine engines, increased speeds, pressures and temperatures are used to reduce specific fuel consumption and increase thrust/weight ratios. Hence, the turbine airfoils are subjected to increased heat loads escalating the cooling requirements to satisfy life goals. The efficient use of cooling air requires that the details of local geometry and flow conditions be adequately modeled to predict local heat loads and the corresponding heat transfer coefficients. The objective of this program is to develop a heat transfer and pressure drop data base, computational fluid dynamic techniques and correlations for multi-pass rotating coolant passages with and without flow turbulators. The experimental effort is focused on the simulation of configurations and conditions expected in the blades of advanced aircraft high pressure turbines. With the use of this data base, the effects of Coriolis and buoyancy forces on the coolant side flow can be included in the design of turbine blades

    Assembly, Structure, and Reactivity of Cu\u3csub\u3e4\u3c/sub\u3eS and Cu\u3csub\u3e3\u3c/sub\u3eS Models for the Nitrous Oxide Reductase Active Site, Cu\u3csub\u3eZ\u3c/sub\u3e*

    Get PDF
    Bridging diphosphine ligands were used to facilitate the assembly of copper clusters with single sulfur atom bridges that model the structure of the CuZ* active site of nitrous oxide reductase. Using bis(diphenylphosphino)amine (dppa), a [CuI4(μ4-S)] cluster with N–H hydrogen bond donors in the secondary coordination sphere was assembled. Solvent and anion guests were found docking to the N–H sites in the solid state and in the solution phase, highlighting a kinetically viable pathway for substrate introduction to the inorganic core. Using bis(dicyclohexylphosphino)methane (dcpm), a [CuI3(μ3-S)] cluster was assembled preferentially. Both complexes exhibited reversible oxidation events in their cyclic voltammograms, making them functionally relevant to the CuZ* active site that is capable of catalyzing a multielectron redox transformation, unlike the previously known [CuI4(μ4-S)] complex from Yam and co-workers supported by bis(diphenylphosphino)methane (dppm). The dppa-supported [CuI4(μ4-S)] cluster reacted with N3–, a linear triatomic substrate isoelectronic to N2O, in preference to NO2–, a bent triatomic. This [CuI4(μ4-S)] cluster also bound I–, a known inhibitor of CuZ*. Consistent with previous observations for nitrous oxide reductase, the tetracopper model complex bound the I– inhibitor much more strongly and rapidly than the substrate isoelectronic to N2O, producing unreactive μ3-iodide clusters including a [Cu3(μ3-S)(μ3-I)] complex related to the [Cu4(μ4-S)(μ2-I)] form of the inhibited enzyme

    Optical transitions in highly-charged californium ions with high sensitivity to variation of the fine-structure constant

    Full text link
    We study electronic transitions in highly-charged Cf ions that are within the frequency range of optical lasers and have very high sensitivity to potential variations in the fine-structure constant, alpha. The transitions are in the optical despite the large ionisation energies because they lie on the level-crossing of the 5f and 6p valence orbitals in the thallium isoelectronic sequence. Cf16+ is a particularly rich ion, having several narrow lines with properties that minimize certain systematic effects. Cf16+ has very large nuclear charge and large ionisation energy, resulting in the largest alpha-sensitivity seen in atomic systems. The lines include positive and negative shifters

    New Born-Infeld and DpDp-Brane Actions under 2-Metric and 3-Metric Prescriptions

    Full text link
    The parent action method is utilized to the Born-Infeld and DpDp-brane theories. Various new forms of Born-Infeld and DpDp-brane actions are derived by using this systematic approach, in which both the already known 2-metric and newly proposed 3-metric prescriptions are considered. An auxiliary worldvolume tensor field, denoted by ωμν{\omega}_{{\mu}{\nu}}, is introduced and treated probably as an additional worldvolume metric because it plays a similar role to that of the auxiliary worldvolume (also called {\em intrinsic}) metric γμν{\gamma}_{{\mu}{\nu}}. Some properties, such as duality, permutation and Weyl invariance as a local worldvolume symmetry of the new forms are analyzed. In particular, a new symmetry, i.e. the double Weyl invariance is discovered in 3-metric forms.Comment: v1: 30 pages, 4 figures; v2: 31 pages, 4 figures, final version with some modifications to appear in Phys. Rev.
    • …
    corecore