20,536 research outputs found
Two-Electron Photon Emission From Metallic Quantum Wells
Unusual emission of visible light is observed in scanning tunneling
microscopy of the quantum well system Na on Cu(111). Photons are emitted at
energies exceeding the energy of the tunneling electrons. Model calculations of
two-electron processes which lead to quantum well transitions reproduce the
experimental fluorescence spectra, the quantum yield, and the power-law
variation of the intensity with the excitation current.Comment: revised version, as published; 4 pages, 3 figure
Gibbs Ensembles of Nonintersecting Paths
We consider a family of determinantal random point processes on the
two-dimensional lattice and prove that members of our family can be interpreted
as a kind of Gibbs ensembles of nonintersecting paths. Examples include
probability measures on lozenge and domino tilings of the plane, some of which
are non-translation-invariant.
The correlation kernels of our processes can be viewed as extensions of the
discrete sine kernel, and we show that the Gibbs property is a consequence of
simple linear relations satisfied by these kernels. The processes depend on
infinitely many parameters, which are closely related to parametrization of
totally positive Toeplitz matrices.Comment: 6 figure
The Impact of an Innovative Education and Outreach Project by a Physics Experiment
When the education and outreach project of ATLAS, a leading experiment at the
Large Hadron Collider, was initiated in 1995, we wanted to share the drama and
excitement in the exploration and discovery of new science. The goal was to
make these fascinating stories understandable and available to everybody and
inspire the next generation of scientists and engineers. The education and
outreach material included classroom activities, an extensive website, videos,
a YouTube channel, social media, a planetarium show, and materials related to
search for and discovery of the Higgs Boson.Comment: 17 pages, 13 figure
Aperiodic tumbling of microrods advected in a microchannel flow
We report on an experimental investigation of the tumbling of microrods in
the shear flow of a microchannel (40 x 2.5 x 0.4 mm). The rods are 20 to 30
microns long and their diameters are of the order of 1 micron. Images of the
centre-of-mass motion and the orientational dynamics of the rods are recorded
using a microscope equipped with a CCD camera. A motorised microscope stage is
used to track individual rods as they move along the channel. Automated image
analysis determines the position and orientation of a tracked rods in each
video frame. We find different behaviours, depending on the particle shape, its
initial position, and orientation. First, we observe periodic as well as
aperiodic tumbling. Second, the data show that different tumbling trajectories
exhibit different sensitivities to external perturbations. These observations
can be explained by slight asymmetries of the rods. Third we observe that after
some time, initially periodic trajectories lose their phase. We attribute this
to drift of the centre of mass of the rod from one to another stream line of
the channel flow.Comment: 14 pages, 8 figures, as accepted for publicatio
Transport in metallic multi-island Coulomb blockade systems: A systematic perturbative expansion in the junction transparency
We study electronic transport through metallic multi-island Coulomb-blockade
systems. Based on a diagrammatic real-time approach, we develop a computer
algorithm that generates and calculates all transport contributions up to
second order in the tunnel-coupling strengths for arbitrary multi-island
systems. This comprises sequential and cotunneling, as well as terms
corresponding to a renormalization of charging energies and tunneling
conductances. Multi-island cotunneling processes with energy transfer between
different island are taken into account. To illustrate our approach we analyze
the current through an island in Coulomb blockade, that is electrostatically
coupled to a second island through which a large current is flowing. In this
regime both cotunneling processes involving one island only as well as
multi-island processes are important. The latter can be understood as
photon-assisted sequential tunneling in the blockaded island, where the photons
are provided by potential fluctuations due to sequential tunneling in the
second island. We compare results of our approach to a P(E)-theory for
photon-assisted tunneling in the weak coupling limit.Comment: 14 pages, 7 figures, published version; minor changes in Sec. IV
Prospects for cooling nanomechanical motion by coupling to a superconducting microwave resonator
Recent theoretical work has shown that radiation pressure effects can in
principle cool a mechanical degree of freedom to its ground state. In this
paper, we apply this theory to our realization of an opto-mechanical system in
which the motion of mechanical oscillator modulates the resonance frequency of
a superconducting microwave circuit. We present experimental data demonstrating
the large mechanical quality factors possible with metallic, nanomechanical
beams at 20 mK. Further measurements also show damping and cooling effects on
the mechanical oscillator due to the microwave radiation field. These data
motivate the prospects for employing this dynamical backaction technique to
cool a mechanical mode entirely to its quantum ground state.Comment: 6 pages, 6 figure
Constant net-time headway as key mechanism behind pedestrian flow dynamics
We show that keeping a constant lower limit on the net-time headway is the
key mechanism behind the dynamics of pedestrian streams. There is a large
variety in flow and speed as functions of density for empirical data of
pedestrian streams, obtained from studies in different countries. The net-time
headway however, stays approximately constant over all these different data
sets. By using this fact, we demonstrate how the underlying dynamics of
pedestrian crowds, naturally follows from local interactions. This means that
there is no need to come up with an arbitrary fit function (with arbitrary fit
parameters) as has traditionally been done. Further, by using not only the
average density values, but the variance as well, we show how the recently
reported stop-and-go waves [Helbing et al., Physical Review E, 75, 046109]
emerge when local density variations take values exceeding a certain maximum
global (average) density, which makes pedestrians stop.Comment: 7 pages, 7 figure
Remaining lifetime and absolute 10-year probabilities of osteoporotic fracture in Swiss men and women
Summary: Remaining lifetime and absolute 10-year probabilities for osteoporotic fractures were determined by gender, age, and BMD values. Remaining lifetime probability at age 50years was 20.2% in men and 51.3% in women and increased with advancing age and decreasing BMD. The study validates the elements required to populate a Swiss-specific FRAX® model. Introduction: Switzerland belongs to high-risk countries for osteoporosis. Based on demographic projections, burden will still increase. We assessed remaining lifetime and absolute 10-year probabilities for osteoporotic fractures by gender, age and BMD in order to populate FRAX® algorithm for Switzerland. Methods: Osteoporotic fracture incidence was determined from national epidemiological data for hospitalised fractured patients from the Swiss Federal Office of Statistics in 2000 and results of a prospective Swiss cohort with almost 5,000 fractured patients in 2006. Validated BMD-associated fracture risk was used together with national death incidence and risk tables to determine remaining lifetime and absolute 10-year fracture probabilities for hip and major osteoporotic (hip, spine, distal radius, proximal humerus) fractures. Results: Major osteoporotic fractures incidence was 773 and 2,078 per 100,000 men and women aged 50 and older. Corresponding remaining lifetime probabilities at age 50 were 20.2% and 51.3%. Hospitalisation for clinical spine, distal radius, and proximal humerus fractures reached 25%, 30% and 50%, respectively. Absolute 10-year probability of osteoporotic fracture increased with advancing age and decreasing BMD and was higher in women than in men. Conclusion: This study validates the elements required to populate a Swiss-specific FRAX® model, a country at highest risk for osteoporotic fracture
FRAX® assessment of osteoporotic fracture probability in Switzerland
Summary: A Swiss-specific FRAX® model was developed. Patient profiles at increased probability of fracture beyond currently accepted reimbursement thresholds for bone mineral density (BMD) measurement by dual X-ray absorptiometry (DXA), and osteoporosis treatment were identified. Introduction: This study aimed to determine which constellations of clinical risk factors, alone, or combined with BMD measurement by DXA, contribute to improved identification of Swiss patients with increased probability of fracture. Methods: The 10-year probability of hip and any major osteoporotic fracture was computed for both sexes, based on Swiss epidemiological data, integrating fracture risk and death hazard, in relation to validated clinical risk factors, with and without BMD values. Results: Fracture probability increased with age, lower body mass index (BMI), decreasing BMD T-score, and all clinical risk factors used alone or combined. Several constellations of risk factor profiles were identified, indicating identical or higher absolute fracture probability than risk factors currently accepted for DXA reimbursement in Switzerland. With identical sex, age and BMI, subjects with parental history of hip fracture had as high a probability of any major osteoporotic fracture as patients on oral glucocorticoids or with a prevalent fragility fracture. The presence of additional risk factors further increased fracture probability. Conclusions: The customised FRAX® model indicates that a shift from the current DXA-based intervention paradigm, toward a fracture risk continuum based on the 10-year probability of any major osteoporotic fracture may improve identification of patients at increased fracture ris
- …