5 research outputs found

    Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the United States

    Get PDF
    Short-term probabilistic forecasts of the trajectory of the COVID-19 pandemic in the United States have served as a visible and important communication channel between the scientific modeling community and both the general public and decision-makers. Forecasting models provide specific, quantitative, and evaluable predictions that inform short-term decisions such as healthcare staffing needs, school closures, and allocation of medical supplies. Starting in April 2020, the US COVID-19 Forecast Hub (https://covid19forecasthub.org/) collected, disseminated, and synthesized tens of millions of specific predictions from more than 90 different academic, industry, and independent research groups. A multimodel ensemble forecast that combined predictions from dozens of groups every week provided the most consistently accurate probabilistic forecasts of incident deaths due to COVID-19 at the state and national level from April 2020 through October 2021. The performance of 27 individual models that submitted complete forecasts of COVID-19 deaths consistently throughout this year showed high variability in forecast skill across time, geospatial units, and forecast horizons. Two-thirds of the models evaluated showed better accuracy than a naïve baseline model. Forecast accuracy degraded as models made predictions further into the future, with probabilistic error at a 20-wk horizon three to five times larger than when predicting at a 1-wk horizon. This project underscores the role that collaboration and active coordination between governmental public-health agencies, academic modeling teams, and industry partners can play in developing modern modeling capabilities to support local, state, and federal response to outbreaks

    The United States COVID-19 Forecast Hub dataset

    Get PDF
    Academic researchers, government agencies, industry groups, and individuals have produced forecasts at an unprecedented scale during the COVID-19 pandemic. To leverage these forecasts, the United States Centers for Disease Control and Prevention (CDC) partnered with an academic research lab at the University of Massachusetts Amherst to create the US COVID-19 Forecast Hub. Launched in April 2020, the Forecast Hub is a dataset with point and probabilistic forecasts of incident cases, incident hospitalizations, incident deaths, and cumulative deaths due to COVID-19 at county, state, and national, levels in the United States. Included forecasts represent a variety of modeling approaches, data sources, and assumptions regarding the spread of COVID-19. The goal of this dataset is to establish a standardized and comparable set of short-term forecasts from modeling teams. These data can be used to develop ensemble models, communicate forecasts to the public, create visualizations, compare models, and inform policies regarding COVID-19 mitigation. These open-source data are available via download from GitHub, through an online API, and through R packages

    Comparison of Fecal Calprotectin Methods for Predicting Relapse of Pediatric Inflammatory Bowel Disease

    No full text
    Background. Pediatric inflammatory bowel disease (IBD) is on the rise worldwide. Endoscopies are necessary for IBD assessment but are invasive, expensive, and inconvenient. Recently, fecal calprotectin (FCal) was proposed as a noninvasive and specific marker of gut inflammation. We evaluated the analytical performance of three FCal assays and their clinical performance in predicting relapse in pediatric IBD. Methods. This study used 40 pediatric IBD and 40 random non-IBD patients’ fecal samples. Two automated ELISAs (Bühlmann and PhiCal® Calprotectin-EIA) and an EliA (Phadia 250 EliA-Calprotectin) were used to evaluate the analytical performance. The clinical performance was assessed by PhiCal Calprotectin-EIA, EliA-Calprotectin, and Bühlmann immunochromatographic point-of-care test (POCT). Results. All assays displayed acceptable analytical performance below and above the medical decision cut-off [imprecision (CV < 10% intra-assay; <15% interassay); linearity (overall mean % deviation < 16.5%)]. The agreement with PhiCal Calprotectin-EIA was 100% and 78.6% for Bühlmann (95% CI, 87.5–100; Kappa: 1) and EliA-Calprotectin (95% CI, 60.5–89.8; Kappa: 0.32), respectively, and 63.6% between Bühlmann and EliA-Calprotectin (95% CI, 46.6–77.8; Kappa: 0.16). All assays evaluated had similar clinical performance [AUC: 0.84 (EliA-Calprotectin); 0.83 (POCT and PhiCal Calprotectin-EIA)]. Conclusion. FCal levels determined using the same method and assay together with clinical history would be a noninvasive and useful tool in monitoring pediatric IBD

    Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the United States.

    Get PDF
    Short-term probabilistic forecasts of the trajectory of the COVID-19 pandemic in the United States have served as a visible and important communication channel between the scientific modeling community and both the general public and decision-makers. Forecasting models provide specific, quantitative, and evaluable predictions that inform short-term decisions such as healthcare staffing needs, school closures, and allocation of medical supplies. Starting in April 2020, the US COVID-19 Forecast Hub (https://covid19forecasthub.org/) collected, disseminated, and synthesized tens of millions of specific predictions from more than 90 different academic, industry, and independent research groups. A multimodel ensemble forecast that combined predictions from dozens of groups every week provided the most consistently accurate probabilistic forecasts of incident deaths due to COVID-19 at the state and national level from April 2020 through October 2021. The performance of 27 individual models that submitted complete forecasts of COVID-19 deaths consistently throughout this year showed high variability in forecast skill across time, geospatial units, and forecast horizons. Two-thirds of the models evaluated showed better accuracy than a naïve baseline model. Forecast accuracy degraded as models made predictions further into the future, with probabilistic error at a 20-wk horizon three to five times larger than when predicting at a 1-wk horizon. This project underscores the role that collaboration and active coordination between governmental public-health agencies, academic modeling teams, and industry partners can play in developing modern modeling capabilities to support local, state, and federal response to outbreaks
    corecore