174 research outputs found
Control of metallation and active cofactor assembly in the class Ia and Ib ribonucleotide reductases: diiron or dimanganese?
Ribonucleotide reductases (RNRs) convert nucleotides to deoxynucleotides in all organisms. Activity of the class Ia and Ib RNRs requires a stable tyrosyl radical (Y•), which can be generated by the reaction of O[subscript 2] with a diferrous cluster on the β subunit to form active diferric-Y• cofactor. Recent experiments have demonstrated, however, that in vivo the class Ib RNR contains an active dimanganese(III)-Y• cofactor. The similar metal binding sites of the class Ia and Ib RNRs, their ability to bind both Mn[superscript II] and Fe[superscript II], and the activity of the class Ib RNR with both diferric-Y• and dimanganese(III)-Y• cofactors raise the intriguing question of how the cell prevents mismetallation of these essential enzymes. The presence of the class Ib RNR in numerous pathogenic bacteria also highlights the importance of manganese for these organisms’ growth and virulence
Bacillus Subtilis Class Ib Ribonucleotide Reductase: High Activity and Dynamic Subunit Interactions
The class Ib ribonucleotide reductase (RNR) isolated from Bacillus subtilis was recently purified as a 1:1 ratio of NrdE (α) and NrdF (β) subunits and determined to have a dimanganic-tyrosyl radical (Mn[superscript III][subscript 2]-Y·) cofactor. The activity of this RNR and the one reconstituted from recombinantly expressed NrdE and reconstituted Mn[superscript III][subscript 2]-Y· NrdF using dithiothreitol as the reductant, however, was low (160 nmol min[superscript –1] mg[superscript –1]). The apparent tight affinity between the two subunits, distinct from all class Ia RNRs, suggested that B. subtilis RNR might be the protein that yields to the elusive X-ray crystallographic characterization of an “active” RNR complex. We now report our efforts to optimize the activity of B. subtilis RNR by (1) isolation of NrdF with a homogeneous cofactor, and (2) identification and purification of the endogenous reductant(s). Goal one was achieved using anion exchange chromatography to separate apo-/mismetalated-NrdFs from Mn[superscript III][subscript 2]-Y· NrdF, yielding enzyme containing 4 Mn and 1 Y·[over β [subscript 2]]. Goal two was achieved by cloning, expressing, and purifying TrxA (thioredoxin), YosR (a glutaredoxin-like thioredoxin), and TrxB (thioredoxin reductase). The success of both goals increased the specific activity to ~1250 nmol min[superscript –1] mg[superscript –1] using a 1:1 mixture of NrdE:Mn[superscript III][subscript 2]-Y· NrdF and either TrxA or YosR and TrxB. The quaternary structures of NrdE, NrdF, and NrdE:NrdF (1:1) were characterized by size exclusion chromatography and analytical ultracentrifugation. At physiological concentrations (~1 μM), NrdE is a monomer (α) and Mn[superscript III][subscript 2]-Y· NrdF is a dimer (β[subscript 2]). A 1:1 mixture of NrdE:NrdF, however, is composed of a complex mixture of structures in contrast to expectations.Massachusetts Institute of Technology. Biophysical Instrumentation Facility (NSF-007031
Unnatural amino acids: better than the real things?
Considerable effort has been dedicated to the development of technology for the site-specific incorporation of unnatural amino acids into proteins, with nonsense codon suppression and expressed protein ligation emerging as two of the most promising methods. Recent research advances in which these methods have been applied to study protein function and mechanism are briefly highlighted, and the potential of the methods for efficient, widespread future use in vitro and in vivo is critically evaluated
Charge-Transfer Dynamics at the α/β Subunit Interface of a Photochemical Ribonucleotide Reductase
United States. National Institutes of Health (GM 29595
Reversible, Long-Range Radical Transfer in E. coli Class Ia Ribonucleotide Reductase
Ribonucleotide reductases (RNRs) catalyze the conversion of nucleotides (NDPs or NTPs where N = C, U, G, or A) to 2′-deoxynucleotides (dNDPs or dNTPs)[superscript 1] and are responsible for controlling the relative ratios and absolute concentrations of cellular dNTP pools. For this reason, RNRs play a major role in ensuring the fidelity of DNA replication and repair. RNRs are found in all organisms and are classified based on the metallocofactor used to initiate catalysis,[superscript 1] with the class Ia RNRs requiring a diferric-tyrosyl radical (Y•) cofactor.National Institutes of Health (U.S.) (GM47274)National Institutes of Health (U.S.) (GM29595
Growth and Localization of Polyhydroxybutyrate Granules in Ralstonia eutropha
The bacterium Ralstonia eutropha forms cytoplasmic granules of polyhydroxybutyrate that are a source of biodegradable thermoplastic. While much is known about the biochemistry of polyhydroxybutyrate production, the cell biology of granule formation and growth remains unclear. Previous studies have suggested that granules form either in the inner membrane, on a central scaffold, or in the cytoplasm. Here we used electron cryotomography to monitor granule genesis and development in 3 dimensions (3-D) in a near-native, “frozen-hydrated” state in intact Ralstonia eutropha cells. Neither nascent granules within the cell membrane nor scaffolds were seen. Instead, granules of all sizes resided toward the center of the cytoplasm along the length of the cell and exhibited a discontinuous surface layer more consistent with a partial protein coating than either a lipid mono- or bilayer. Putatively fusing granules were also seen, suggesting that small granules are continually generated and then grow and merge. Together, these observations support a model of biogenesis wherein granules form in the cytoplasm coated not by phospholipid but by protein. Previous thin-section electron microscopy (EM), fluorescence microscopy, and atomic force microscopy (AFM) results to the contrary may reflect both differences in nucleoid condensation and specimen preparation-induced artifacts
Composition and Structure of the Inorganic Core of Relaxed Intermediate
Activation of the diferrous center of the β2 (R2) subunit of the class 1a Escherichia coli ribonucleotide reductases by reaction with O2 followed by one-electron reduction yields a spin-coupled, paramagnetic Fe(III)/Fe(IV) intermediate, denoted X, whose identity has been sought by multiple investigators for over a quarter of a century. To determine the composition and structure of X, the present study has applied 57Fe, 14,15N, 17O, and 1H electron nuclear double resonance (ENDOR) measurements combined with quantitative measurements of 17O and 1H electron paramagnetic resonance line-broadening studies to wild-type X, which is very short-lived, and to X prepared with the Y122F mutant, which has a lifetime of many seconds. Previous studies have established that over several seconds the as-formed X(Y122F) relaxes to an equilibrium structure. The present study focuses on the relaxed structure. It establishes that the inorganic core of relaxed X has the composition [(OH–)FeIII–O–FeIV]: there is no second inorganic oxygenic bridge, neither oxo nor hydroxo. Geometric analysis of the 14N ENDOR data, together with recent extended X-ray absorption fine structure measurements of the Fe–Fe distance (Dassama, L. M.; et al. J. Am. Chem. Soc. 2013, 135, 16758), supports the view that X contains a “diamond-core” Fe(III)/Fe(IV) center, with the irons bridged by two ligands. One bridging ligand is the oxo bridge (OBr) derived from O2 gas. Given the absence of a second inorganic oxygenic bridge, the second bridging ligand must be protein derived, and is most plausibly assigned as a carboxyl oxygen from E238.United States. National Institutes of Health (GM 111097)United States. National Institutes of Health (GM 29595
Redox-Linked Changes to the Hydrogen-Bonding Network of Ribonucleotide Reductase β2
Ribonucleotide reductase (RNR) catalyzes conversion of nucleoside diphosphates (NDPs) to 2′-deoxynucleotides, a critical step in DNA replication and repair in all organisms. Class-Ia RNRs, found in aerobic bacteria and all eukaryotes, are a complex of two subunits: α2 and β2. The β2 subunit contains an essential diferric–tyrosyl radical (Y122O•) cofactor that is needed to initiate reduction of NDPs in the α2 subunit. In this work, we investigated the Y122O• reduction mechanism in Escherichia coli β2 by hydroxyurea (HU), a radical scavenger and cancer therapeutic agent. We tested the hypothesis that Y122OH redox reactions cause structural changes in the diferric cluster. Reduction of Y122O• was studied using reaction-induced FT-IR spectroscopy and [[superscript 13]C]aspartate-labeled β2. These Y122O• minus Y122OH difference spectra provide evidence that the Y122OH redox reaction is associated with a frequency change to the asymmetric vibration of D84, a unidentate ligand to the diferric cluster. The results are consistent with a redox-induced shift in H-bonding between Y122OH and D84 that may regulate proton-transfer reactions on the HU-mediated inactivation pathway in isolated β2.National Institutes of Health (U.S.) (Grant GM29595
Recommended from our members
Charge Transfer Dynamics at the α/β Subunit Interface of a Photochemical Ribonucleotide Reductase
Ribonucleotide reductase (RNR) catalyzes the conversion of ribonucleotides to deoxyribonucleotides to provide the monomeric building blocks for DNA replication and repair. Nucleotide reduction occurs by way of multi-step proton-coupled electron transfer (PCET) over a pathway of redox active amino acids spanning ~ 35 Å and two subunits (α2 and β2). Despite the fact that PCET in RNR is rapid, slow conformational changes mask kinetic examination of these steps. As such, we have pioneered methodology in which site-specific incorporation of a [ReI] photooxidant on the surface of the β2 subunit (photoβ2) allows photochemical oxidation of the adjacent PCET pathway residue β-Y356 and time-resolved spectroscopic observation of the ensuing reactivity. A series of photoβ2s capable of performing photoinitiated substrate turnover have been prepared in which four different fluorotyrosines (FnYs) are incorporated in place of β-Y356. The FnYs are deprotonated under biological conditions, undergo oxidation by electron transfer (ET) and provide a means by which to vary the ET driving force (ΔG°) with minimal additional perturbations across the series. We have used these features to map the correlation between ΔG° and kET both with and without the fully assembled photoRNR complex. The photooxidation of FnY356 within the α/β subunit interface occurs within the Marcus inverted region with a reorganization energy of λ ≈ 1 eV. We also observe enhanced electronic coupling between donor and acceptor (HDA) in the presence of an intact PCET pathway. Additionally, we have investigated the dynamics of proton transfer (PT) by a variety of methods including dependencies on solvent isotopic composition, buffer concentration, and pH. We present evidence for the role of α2 in facilitating PT during β-Y356 photooxidation; PT occurs by way of readily exchangeable positions and within a relatively “tight” subunit interface. These findings show that RNR controls ET by lowering λ, raising HDA, and directing PT both within and between individual polypeptide subunits.Chemistry and Chemical Biolog
A Chemically Competent Thiosulfuranyl Radical on the Escherichia coli Class III Ribonucleotide Reductase
The class III ribonucleotide reductases (RNRs) are glycyl radical (G•) enzymes that provide the balanced pool of deoxynucleotides required for DNA synthesis and repair in many facultative and obligate anaerobic bacteria and archaea. Unlike the class I and II RNRs, where reducing equivalents for the reaction are delivered by a redoxin (thioredoxin, glutaredoxin, or NrdH) via a pair of conserved active site cysteines, the class III RNRs examined to date use formate as the reductant. Here, we report that reaction of the Escherichia coli class III RNR with CTP (substrate) and ATP (allosteric effector) in the absence of formate leads to loss of the G• concomitant with stoichiometric formation of a new radical species and a “trapped” cytidine derivative that can break down to cytosine. Addition of formate to the new species results in recovery of 80% of the G• and reduction of the cytidine derivative, proposed to be 3′-keto-deoxycytidine, to dCTP and a small amount of cytosine. The structure of the new radical has been identified by 9.5 and 140 GHz EPR spectroscopy on isotopically labeled varieties of the protein to be a thiosulfuranyl radical [RSSR[subscript 2]]•, composed of a cysteine thiyl radical stabilized by an interaction with a methionine residue. The presence of a stable radical species on the reaction pathway rationalizes the previously reported [[superscript 3]H]-(k[subscript cat]/K[subscript M]) isotope effect of 2.3 with [[superscript 3]H]-formate, requiring formate to exchange between the active site and solution during nucleotide reduction. Analogies with the disulfide anion radical proposed to provide the reducing equivalent to the 3′-keto-deoxycytidine intermediate by the class I and II RNRs provide further evidence for the involvement of thiyl radicals in the reductive half-reaction catalyzed by all RNRs.NWO of the Netherlands (Rubicon Fellowship)Singapore. Agency for Science, Technology and ResearchNational Institutes of Health (U.S.) (Grant GM29595)National Institutes of Health (U.S.) (Grant EB-002804)National Institutes of Health (U.S.) (Grant EB-002026
- …