937 research outputs found

    Understanding Music’s Theological Significance: A Kantian Approach

    Get PDF
    Jeremy Begbie speaks of music as ‘theologically loaded’: as conveying a sense of intrinsic theological significance. This thesis explores the possibility that music is theologically loaded in an epistemological sense: that music is dependent on knowledge of God. Modern epistemologies, in which knowledge is constructed by the individual human mind, pose a challenge to such a conclusion, since even if divine knowledge is possible it would appear irrelevant for our understanding of objects, such as music, that can be known directly through experience. Because Immanuel Kant presents a particularly stringent theory of human-mind-dependent knowledge, we can use his aesthetic theory as an analytical tool both to assess the epistemological content of our aesthetic judgements as they relate to musical beauty, and to consider whether theological knowledge can be relevant to these judgements. Applying Kant’s aesthetic theory to musical beauty, we find that from within, music seems sublime — defying our ability to understand its form or predict its structure — while from without it remains clearly intelligible. This unique construction makes our judgements of musical beauty particularly dependent on what Kant calls a ‘common sense’: a principle that, although outside our cognition, nevertheless plays a constitutive role in our aesthetic judgements by ensuring their universal validity. The dependence of our aesthetic judgements on this common sense allows for the possibility that musical beauty is dependent on knowledge of God — even when considered within a human-mind-dependent epistemology — and thus enables us to give an account of music’s theological significance that is consistent with modern theories of knowledge. Considered within a Christian perspective, this common sense forms the basis for a grammatical understanding of beauty, in which beauty represents the distance between our awareness of divine providence and our limited knowledge of God’s purposes

    Genomic imprinting and environmental disease susceptibility.

    Get PDF
    Genomic imprinting is one of the most intriguing subtleties of modern genetics. The term "imprinting" refers to parent-of-origin-dependent gene expression. The presence of imprinted genes can cause cells with a full parental complement of functional autosomal genes to specifically express one allele but not the other, resulting in monoallelic expression of the imprinted loci. Genomic imprinting plays a critical role in fetal growth and behavioral development, and it is regulated by DNA methylation and chromatin structure. This paper summarizes the Genomic Imprinting and Environmental Disease Susceptibility Conference held 8-10 October 1998 at Duke University, Durham, North Carolina. The conference focused on the importance of genomic imprinting in determining susceptibility to environmentally induced diseases. Conference topics included rationales for imprinting: parental antagonism and speciation; methods for imprinted gene identification: allelic message display and monochromosomal mouse/human hybrids; properties of the imprinted gene cluster human 11p15.5 and mouse distal 7; the epigenetics of X-chromosome inactivation; variability in imprinting: imprint erasure, non-Mendelian inheritance ratios, and polymorphic imprinting; imprinting and behavior: genetics of bipolar disorder, imprinting in Turner syndrome, and imprinting in brain development and social behavior; and aberrant methylation: methylation and chromatin structure, methylation and estrogen exposure, methylation of tumor-suppressor genes, and cancer susceptibility. Environmental factors are capable of causing epigenetic changes in DNA that can potentially alter imprint gene expression and that can result in genetic diseases including cancer and behavioral disorders. Understanding the contribution of imprinting to the regulation of gene expression will be an important step in evaluating environmental influences on human health and disease

    Imprinted genes and transpositions: epigenomic targets for low dose radiation effects. Final report

    Full text link
    The overall hypothesis of this grant application is that low dose ionizing radiation (LDIR) elicits adaptive responses in part by causing heritable DNA methylation changes in the epigenome. This novel postulate was tested by determining if the level of DNA methylation at the Agouti viable yellow (A{sup vy}) metastable locus is altered, in a dose-dependent manner, by low dose radiation exposure (<10 cGy) during early gestation. This information is particularly important to ascertain given the increased use of CT scans in disease diagnosis, increased number of people predicted to live and work in space, and the present concern about radiological terrorism. We showed for the first time that LDIR significantly increased DNA methylation at the A{sup vy} locus in a sex-specific manner (p=0.004). Average DNA methylation was significantly increased in male offspring exposed to doses between 0.7 cGy and 7.6 cGy with maximum effects at 1.4 cGy and 3.0 cGy (p<0.01). Offspring coat color was concomitantly shifted towards pseudoagouti (p<0.01). Maternal dietary antioxidant supplementation mitigated both the DNA methylation changes and coat color shift in the irradiated offspring (p<0.05). Thus, LDIR exposure during gestation elicits epigenetic alterations that lead to positive adaptive phenotypic changes that are negated with antioxidants, indicating they are mediated in part by oxidative stress. These findings provide evidence that in the isogenic Avy mouse model epigenetic alterations resulting from LDIR play a role in radiation hormesis, bringing into question the assumption that every dose of radiation is harmful. Our findings not only have significant implications concerning the mechanism of hormesis, but they also emphasize the potential importance of this phenomenon in determining human risk at low radiation doses. Since the epigenetic regulation of genes varies markedly between species, the effect of LDIR on other epigenetically labile genes (e.g. imprinted genes) in animals and humans needs to be defined

    Maternal Genistein Alters Coat Color and Protects A(vy) Mouse Offspring from Obesity by Modifying the Fetal Epigenome

    Get PDF
    Genistein, the major phytoestrogen in soy, is linked to diminished female reproductive performance and to cancer chemoprevention and decreased adipose deposition. Dietary genistein may also play a role in the decreased incidence of cancer in Asians compared with Westerners, as well as increased cancer incidence in Asians immigrating to the United States. Here, we report that maternal dietary genistein supplementation of mice during gestation, at levels comparable with humans consuming high-soy diets, shifted the coat color of heterozygous viable yellow agouti (A(vy)/a) offspring toward pseudoagouti. This marked phenotypic change was significantly associated with increased methylation of six cytosine–guanine sites in a retrotransposon upstream of the transcription start site of the Agouti gene. The extent of this DNA methylation was similar in endodermal, mesodermal, and ectodermal tissues, indicating that genistein acts during early embryonic development. Moreover, this genistein-induced hypermethylation persisted into adulthood, decreasing ectopic Agouti expression and protecting offspring from obesity. Thus, we provide the first evidence that in utero dietary genistein affects gene expression and alters susceptibility to obesity in adulthood by permanently altering the epigenome

    Imprinting evolution and the price of silence

    Get PDF
    Summary In contrast to the biallelic expression of most genes, expression of genes subject to genomic imprinting is monoallelic and based on the sex of the transmitting parent. Possession of only a single active allele can lead to deleterious health consequences in humans. Aberrant expression of imprinted genes, through either genetic or epigenetic alterations, can result in developmental failures, neurodevelopmental and neurobehavioral disorders and cancer. The evolutionary emergence of imprinting occurred in a common ancestor to viviparous mammals after divergence from the egg-laying monotremes. Current evidence indicates that imprinting regulation in metatherian mammals differs from that in eutherian mammals. This suggests that imprinting mechanisms are evolving from those that were established 150 million years ago. Therefore, comparing genomic sequence of imprinted domains from marsupials and eutherians with those of orthologous regions in monotremes offers a potentially powerful bioinformatics approach for identifying novel imprinted genes and their regulatory elements. Such comparative studies will also further our understanding of the molecular evolution and phylogenetic distribution of imprinted genes

    Studies on mechanisms of augmentation of liver regeneration by cyclosporine and FK 506

    Get PDF
    Evidence could not be found of immune modulation of liver regeneration. The powerful immunosuppressive drug FK 506, which augments the response after partial hepatectomy in normal rats, had the same effect in T cell—deficient nude rats. The cytotoxicity of natural killer cells in treated nude rats was not significantly changed by FK 506 therapy. However, the serum of FK 506—treated nude rats increased hepatocyte proliferation when added to third‐party hepatocyte cultures, suggesting that FK 506 had induced a serum growth factor in the nude rats or had suppressed an inhibitory factor. A hypothesis was advanced that FK 506 (and cyclosporine) affects hepatic growth by nonimmunological pathways. (HEPATOLOGY 1991;14:140–143.) Copyright © 1991 American Association for the Study of Liver Disease
    corecore