2,038 research outputs found

    EDU 510.50: Developmental and Learning Sciences

    Get PDF

    Data Center Power System Emulation and GaN-Based High-Efficiency Rectifier with Reactive Power Regulation

    Get PDF
    Data centers are indispensable for today\u27s computing and networking society, which has a considerable power consumption and significant impact on power system. Meanwhile, the average energy usage efficiency of data centers is still not high, leading to significant power loss and system cost. In this dissertation, effective methods are proposed to investigate the data center load characteristics, improve data center power usage efficiency, and reduce the system cost. First, a dynamic power model of a typical data center ac power system is proposed, which is complete and able to predict the data center\u27s dynamic performance. Also, a converter-based data center power emulator serving as an all-in-one load is developed. The power emulator has been verified experimentally in a regional network in the HTB. Dynamic performances during voltage sag events and server load variations are emulated and discussed. Then, a gallium nitride (GaN) based critical conduction mode (CRM) totem-pole power factor correction (PFC) rectifier is designed as the single-phase front-end rectifier to improve the data center power distribution efficiency. Zero voltage switching (ZVS) modulation with ZVS time margin is developed, and a digital variable ON-time control is employed. A hardware prototype of the PFC rectifier is built and demonstrated with high efficiency. To achieve low input current total harmonic distortion (iTHD), current distortion mechanisms are analyzed, and effective solutions for mitigating current distortion are proposed and validated with experiments. The idea of providing reactive power compensation with the rack-level GaN-based front-end rectifiers is proposed for data centers to reduce data center\u27s power loss and system cost. Full-range ZVS modulation is extended into non-unity PF condition and a GaN-based T-type totem-pole rectifier with reactive power control is proposed. A hardware prototype of the proposed rectifier is built and demonstrated experimentally with high power efficiency and flexible reactive power regulation. Experimental emulation of the whole data center system also validates the capability of reactive power compensation by the front-end rectifiers, which can also generate or consume more reactive power to achieve flexible PF regulation and help support the power system

    Preparing STEM Teachers through Technology Supported Collaborative Learning

    Get PDF
    There were two major goals of this mentored grant. One was to examine how technology with shared display and multi-user features influences pre-service teachers’ participation pattern and social dynamics in collaborative learning activities. The second goal was to help the Principal Investigator receive mentoring on applying for research grants from external funding agencies. Both goals were successfully achieved at the completion of this grant

    EDEC 540.50: Neuroscience and it\u27s Impact on Child Development - Online

    Get PDF
    • …
    corecore