18 research outputs found
Is there a common latent cognitive construct for dementia estimation across two Chinese cohorts?
INTRODUCTION:
It is valuable to identify common latent cognitive constructs for dementia prevalence estimation across Chinese aging cohorts.
METHODS:
Based on cognitive measures of 12015 Chinese Longitudinal Healthy Longevity Survey (CLHLS; 13 items) and 6623 China Health and Retirement Longitudinal Study (CHARLS; 9 items) participants aged 65 to 99 in 2018, confirmatory factor analysis was applied to identify latent cognitive constructs, and to estimate dementia prevalence compared to Mini-Mental State Examination (MMSE) and nationwide estimates of the literature.
RESULTS:
A common three-factor cognitive construct of orientation, memory, and executive function and language was found for both cohorts with adequate model fits. Crude dementia prevalence estimated by factor scores was similar to MMSE in CLHLS, and was more reliable in CHARLS. Age-standardized dementia estimates of CLHLS were lower than CHARLS among those aged 70+, which were close to the nationwide prevalence reported by the COAST study and Global Burden of Disease.
DISCUSSION:
We verified common three-factor cognitive constructs for both cohorts, providing an approach to estimate dementia prevalence at the national level.
HIGHLIGHTS:
Common three-factor cognitive constructs were identified in Chinese Longitudinal Healthy Longevity Survey (CLHLS) and China Health and Retirement Longitudinal Study (CHARLS).
Crude dementia estimates using factor scores were reliable in both cohorts.
Estimates of CHARLS were close to current evidence, but higher than that of CLHLS
Prediction of myopia development among Chinese school-aged children using refraction data from electronic medical records: A retrospective, multicentre machine learning study
Background
Electronic medical records provide large-scale real-world clinical data for use in developing clinical decision systems. However, sophisticated methodology and analytical skills are required to handle the large-scale datasets necessary for the optimisation of prediction accuracy. Myopia is a common cause of vision loss. Current approaches to control myopia progression are effective but have significant side effects. Therefore, identifying those at greatest risk who should undergo targeted therapy is of great clinical importance. The objective of this study was to apply big data and machine learning technology to develop an algorithm that can predict the onset of high myopia, at specific future time points, among Chinese school-aged children.
Methods and findings
Real-world clinical refraction data were derived from electronic medical record systems in 8 ophthalmic centres from January 1, 2005, to December 30, 2015. The variables of age, spherical equivalent (SE), and annual progression rate were used to develop an algorithm to predict SE and onset of high myopia (SE ≤ −6.0 dioptres) up to 10 years in the future. Random forest machine learning was used for algorithm training and validation. Electronic medical records from the Zhongshan Ophthalmic Centre (a major tertiary ophthalmic centre in China) were used as the training set. Ten-fold cross-validation and out-of-bag (OOB) methods were applied for internal validation. The remaining 7 independent datasets were used for external validation. Two population-based datasets, which had no participant overlap with the ophthalmic-centre-based datasets, were used for multi-resource validation testing. The main outcomes and measures were the area under the curve (AUC) values for predicting the onset of high myopia over 10 years and the presence of high myopia at 18 years of age. In total, 687,063 multiple visit records (≥3 records) of 129,242 individuals in the ophthalmic-centre-based electronic medical record databases and 17,113 follow-up records of 3,215 participants in population-based cohorts were included in the analysis. Our algorithm accurately predicted the presence of high myopia in internal validation (the AUC ranged from 0.903 to 0.986 for 3 years, 0.875 to 0.901 for 5 years, and 0.852 to 0.888 for 8 years), external validation (the AUC ranged from 0.874 to 0.976 for 3 years, 0.847 to 0.921 for 5 years, and 0.802 to 0.886 for 8 years), and multi-resource testing (the AUC ranged from 0.752 to 0.869 for 4 years). With respect to the prediction of high myopia development by 18 years of age, as a surrogate of high myopia in adulthood, the algorithm provided clinically acceptable accuracy over 3 years (the AUC ranged from 0.940 to 0.985), 5 years (the AUC ranged from 0.856 to 0.901), and even 8 years (the AUC ranged from 0.801 to 0.837). Meanwhile, our algorithm achieved clinically acceptable prediction of the actual refraction values at future time points, which is supported by the regressive performance and calibration curves. Although the algorithm achieved balanced and robust performance, concerns about the compromised quality of real-world clinical data and over-fitting issues should be cautiously considered.
Conclusions
To our knowledge, this study, for the first time, used large-scale data collected from electronic health records to demonstrate the contribution of big data and machine learning approaches to improved prediction of myopia prognosis in Chinese school-aged children. This work provides evidence for transforming clinical practice, health policy-making, and precise individualised interventions regarding the practical control of school-aged myopia.This study was funded by the National
Key R&D Program of China (2018YFC0116500),
the National Natural Science Foundation of China
(91546101, 81822010), the Guangdong Science
and Technology Innovation Leading Talents
(2017TX04R031), and Youth Pearl River Scholar in
Guangdong (2016)
Bayesian Diagnostics of Hidden Markov Structural Equation Models with Missing Data
<p>Cocaine is a type of drug that functions to increase the availability of the neurotransmitter dopamine in the brain. However, cocaine dependence or abuse is highly related to an increased risk of psychiatric disorders and deficits in cognitive performance, attention, and decision-making abilities. Given the chronic and persistent features of drug addiction, the progression of abstaining from cocaine often evolves across several states, such as addiction to, moderate dependence on, and swearing off cocaine. Hidden Markov models (HMMs) are well suited to the characterization of longitudinal data in terms of a set of unobservable states, and have increasingly been used to uncover the dynamic heterogeneity in progressive diseases or activities. However, the existence of outliers or influential points may misidentify the hidden states and distort the associated inference. In this study, we develop a Bayesian local influence procedure for HMMs with latent variables in the presence of missing data. The proposed model enables us to investigate the dynamic heterogeneity of multivariate longitudinal data, reveal how the interrelationships among latent variables change from one state to another, and simultaneously conduct statistical diagnosis for the given data, model assumptions, and prior inputs. We apply the proposed procedure to analyze a dataset collected by the UCLA center for advancing longitudinal drug abuse research. Several outliers or influential points that seriously influence estimation results are identified and removed. The proposed procedure also discovers the effects of treatment and individuals’ psychological problems on cocaine use behavior and delineates their dynamic changes across the cocaine-addiction states.</p
Comparative effectiveness research on patients with acute ischemic stroke using Markov decision processes
Abstract Background Several methodological issues with non-randomized comparative clinical studies have been raised, one of which is whether the methods used can adequately identify uncertainties that evolve dynamically with time in real-world systems. The objective of this study is to compare the effectiveness of different combinations of Traditional Chinese Medicine (TCM) treatments and combinations of TCM and Western medicine interventions in patients with acute ischemic stroke (AIS) by using Markov decision process (MDP) theory. MDP theory appears to be a promising new method for use in comparative effectiveness research. Methods The electronic health records (EHR) of patients with AIS hospitalized at the 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine between May 2005 and July 2008 were collected. Each record was portioned into two "state-action-reward" stages divided by three time points: the first, third, and last day of hospital stay. We used the well-developed optimality technique in MDP theory with the finite horizon criterion to make the dynamic comparison of different treatment combinations. Results A total of 1504 records with a primary diagnosis of AIS were identified. Only states with more than 10 (including 10) patients' information were included, which gave 960 records to be enrolled in the MDP model. Optimal combinations were obtained for 30 types of patient condition. Conclusion MDP theory makes it possible to dynamically compare the effectiveness of different combinations of treatments. However, the optimal interventions obtained by the MDP theory here require further validation in clinical practice. Further exploratory studies with MDP theory in other areas in which complex interventions are common would be worthwhile.</p
Sampling locations, trait data, gene expression data and the raw SNP data
Sampling locations, trait data, gene expression data and the raw SNP dat