16 research outputs found

    Comparison of Design Approaches for Low-Cost Sampling Mechanisms in Open-Source Chemical Instrumentation

    Get PDF
    Robotic positioning systems are used in a variety of chemical instruments, primarily for liquid handling purposes, such as autosamplers from vials or well plates. Here, two approaches to the design of open-source autosampler positioning systems for use with 96-well plates are described and compared. The first system, a 3-axis design similar to many low-cost 3D printers that are available on the market, is constructed using an aluminum frame and stepper motors. The other system relies upon a series of 3D printed parts to achieve movement with a series of linker arms based on Selective Compliance Assembly Robot Arm (SCARA) design principles. Full printer design files, assembly instructions, software, and user directions are included for both samplers. The positioning precision of the 3-axis system is better than the SCARA mechanism due to finer motor control, albeit with a slightly higher cost of materials. Based on the improved precision of this approach, the 3-axis autosampler system was used to demonstrate the generation of a segmented flow droplet stream from adjacent wells within a 96-well plate

    Portable, Rapid, and Sensitive Time-Resolved Fluorescence Immunochromatography for On-Site Detection of Dexamethasone in Milk and Pork

    No full text
    Dexamethasone (DEX) is widely used because of its anti-inflammatory, anti-endotoxin, anti-shock, and stress-enhancing response activities. It can increase the risk of diabetes and hypertension if it is abused or used improperly. However, there is a lack of sensitive and rapid screening methods for DEX in food. In this study, a time-resolved fluorescent microspheres immunochromatographic assay (TRFM-ICA) integrated with a portable fluorescence reader was developed for the quantitative detection of DEX in milk and pork. The cut-off values of the TRFM-ICA were 0.25 ng/mL and 0.7 µg/kg, respectively. The limits of quantitation (LOQs) were 0.003 ng/mL and 0.062 µg/kg, respectively. The recovery rates were 80.0–106.7%, and 78.6–83.6%, respectively, with the coefficients of variation ranging 6.3–12.5%, and 7.5–10.3%, respectively. A parallel experiment for 20 milk and 10 pork samples with LC-MS/MS was carried out to confirm the performance of the on-site application of the developed TRFM-ICA. The results of the two methods are basically the same; the correlation (R2) was >0.98. The establishment of TRFM-ICA will provide a new sensitive and efficient technical support for the rapid screening of DEX in food

    Genetic Variants in the Promoter Region of miR-10b and the Risk of Breast Cancer

    No full text
    Variants in microRNA genes may affect their expression by interfering with the microRNA maturation process and may substantially contribute to the risk of breast cancer. Recent studies have identified miR-10b as an interesting candidate because of its close association with the metastatic behavior of breast cancer. However, the roles of miR-10b-related single nucleotide polymorphisms in breast cancer susceptibility remain unclear. This case-control study evaluated the associations between variants in the upstream transcription regulation region of miR-10b and the risk of breast cancer among Chinese women. Seven potentially functional SNPs were investigated using genotyping assays. The potential biological functions of the identified positive SNPs were further evaluated using in silico databases. We found that rs4078756, which was located at the promoter region of miR-10b, was significantly associated with breast cancer risk (rs4078756 AG/GG versus AA, adjusted odds ratio: 1.17, 95% confidence interval: 1.02–1.35). The other six single nucleotide polymorphisms exhibited negative associations. Based on the in silico prediction, rs4078756 potentially regulated miR-10b expression through promoter activation or repression. These findings indicate that a potentially functional SNP (rs4078756) in the promoter region of miR-10b may contribute to breast cancer susceptibility among Chinese women

    Synthesis and Characterization of Cellulose Diacetate-Graft-Polylactide via Solvent-Free Melt Ring-Opening Graft Copolymerization

    No full text
    Cellulose diacetate (CDA) and L-lactide (L-LA) were used to prepare CDA−g−PLLA with a low glass transition temperature under different process conditions. Given the high glass transition temperature (Tg) of CDA, the thermal processing performance of CDA is poor, which greatly limits its application fields. To decrease the Tg of CDA, graft copolymerization was used in this research. A CDA−g−PLLA graft copolymer was synthesized by grafting CDA with L-LA under different reaction conditions using stannous octanoate as the catalyst and variations in the grafting rate under different reaction conditions were compared. The chemical structure and crystal structure of the CDA−g−PLLA were investigated, and thermal properties were also studied. The results showed that the grafting rate was the highest at the L-LA/CDA mass ratio of 4:1 under a reaction temperature of 150 °C for 90 min, and no poly-L-lactide (PLLA) homopolymer was found among the CDA−g−PLLA graft copolymers after purification. The Tg of CDA−g−PLLA was 54.2 °C, and the initial temperature of weightlessness of CDA−g−PLLA was 218.7 °C. The regularity of the original CDA molecular chains was destroyed after grafting PLLA molecular chains. In this research, we investigated the optimal grafting conditions for CDA−g−PLLA and the CDA−g−PLLA had a low Tg, which improves the thermal processing performance of CDA and broadens its application prospects in the industry

    Genetic Variations in miR-30 Family Member Regulatory Regions Are Associated with Breast Cancer Risk in a Chinese Population

    No full text
    MicroRNAs (miRNAs) of the miR-30 family are closely linked with tumor metastasis and play key roles in the complex malignant phenotypes of cancers by targeting many tumor-related genes. Deregulated expression of miR-30 family members has been commonly observed in breast cancer. However, associations between the genetic variants in the regulatory region of miR-30 family and the risk of breast cancer are still limited, especially in the Chinese Han population. In the present study, we conducted a case-control analysis wherein 1064 breast cancer patients and 1073 healthy controls underwent genotyping of 10 SNPs in the regulatory region of miR-30 family members. Multivariate logistic regression analyses illustrated that the rs763354 variant in the miR-30a regulatory region was linked with a significant decrease in breast cancer risk in an additive model (adjusted OR=0.86, 95% CI: 0.75-0.98, P=0.022). Further, eQTL analyses also indicated that this SNP was associated with miR-30a expression levels in breast cancer samples compiled in the TCGA database (P=0.020). The Kaplan-Meier plotter showed that breast cancer patients with higher miR-30a expression have significantly better outcomes than do patients expressing low levels of this miRNA (HR=0.75, 95% CI: 0.61-0.91, P=0.0041). Together, these findings suggest that the miR-30a rs763354 SNP is an important regulator of breast cancer risk, thus making it a potentially viable prognostic biomarker and one that can be used to guide therapeutic treatment in affected patients

    SOD3 is secreted by adipocytes and mitigates high-fat diet-induced obesity, inflammation and insulin resistance

    No full text
    Aims: To study the expression and regulatory role of SOD3 in adipocytes and adipose tissue. Results: SOD3 expression was determined in various tissues of adult C57BL/6J mice, human adipose tissue and epididymal (eWAT), subcutaneous (sWAT) and brown (BAT) adipose tissue of high-fat diet (HFD)-induced obese mice. SOD3 expression and release were evaluated in adipocytes differentiated from primary human preadipocytes and murine bone marrow-derived mesenchymal stem cells. The regulatory role for SOD3 was determined by SOD3 lentivirus knockdown in human adipocytes and global SOD3 KO mice. SOD3 was expressed at high levels in white adipose tissue and adipocytes were the main cells expressing SOD3 in adipose tissue. SOD3 expression was significantly elevated in adipose tissue of HFD-fed mice. Moreover, SOD3 expression and release were markedly increased in differentiated human adipocytes and adipocytes differentiated from mouse bone marrow-derived mesenchymal stem cells compared to undifferentiated cells. In addition, SOD3 silencing in human adipocytes increased expression of genes involved in metabolic pathways such as PPARγ and SEEBP1c and promoted the accumulation of triglyceride. Finally, global SOD3 KO mice were more obese and insulin resistant with enlarged adipose tissue and increased triglyceride accumulation. Innovation: Our data showed that SOD3 is secreted from adipocytes and regulates lipid metabolism in adipose tissue. This important discovery may open up new avenues of research for the cytoprotective role of SOD3 in obesity and its associated metabolic disorders. Conclusion: SOD3 is a protective factor secreted by adipocytes in response to HFD-induced obesity and regulates adipose tissue lipid metabolism

    SOD3 is secreted by adipocytes and mitigates high-fat diet-induced obesity, inflammation and insulin resistance

    No full text
    Aims: To study the expression and regulatory role of SOD3 in adipocytes and adipose tissue. Results: SOD3 expression was determined in various tissues of adult C57BL/6J mice, human adipose tissue and epididymal (eWAT), subcutaneous (sWAT) and brown (BAT) adipose tissue of high-fat diet (HFD)-induced obese mice. SOD3 expression and release were evaluated in adipocytes differentiated from primary human preadipocytes and murine bone marrow-derived mesenchymal stem cells. The regulatory role for SOD3 was determined by SOD3 lentivirus knockdown in human adipocytes and global SOD3 KO mice. SOD3 was expressed at high levels in white adipose tissue and adipocytes were the main cells expressing SOD3 in adipose tissue. SOD3 expression was significantly elevated in adipose tissue of HFD-fed mice. Moreover, SOD3 expression and release were markedly increased in differentiated human adipocytes and adipocytes differentiated from mouse bone marrow-derived mesenchymal stem cells compared to undifferentiated cells. In addition, SOD3 silencing in human adipocytes increased expression of genes involved in metabolic pathways such as PPARγ and SEEBP1c and promoted the accumulation of triglyceride. Finally, global SOD3 KO mice were more obese and insulin resistant with enlarged adipose tissue and increased triglyceride accumulation. Innovation: Our data showed that SOD3 is secreted from adipocytes and regulates lipid metabolism in adipose tissue. This important discovery may open up new avenues of research for the cytoprotective role of SOD3 in obesity and its associated metabolic disorders. Conclusion: SOD3 is a protective factor secreted by adipocytes in response to HFD-induced obesity and regulates adipose tissue lipid metabolism
    corecore