30 research outputs found

    Legislative Documents

    No full text
    Also, variously referred to as: House bills; House documents; House legislative documents; legislative documents; General Court documents

    Table_5_Soil pH Is the Primary Factor Correlating With Soil Microbiome in Karst Rocky Desertification Regions in the Wushan County, Chongqing, China.docx

    No full text
    <p>Karst rocky desertification (KRD) is a process of land degradation, which causes desert-like landscapes, deconstruction of endemic biomass, and declined soil quality. The relationship of KRD progression with above-ground communities (e.g. vegetation and animal) is well-studied. Interaction of soil desertification with underground communities, such as soil microbiome, however, is vastly unknown. This study characterizes change in soil bacterial community in response to KRD progression. Soil bacterial communities were surveyed by deep sequencing of 16S amplicons. Eight soil properties, pH, soil organic matter (SOM), total and available nitrogen (TN and AN), total and available phosphorus (TP and AP), and total and available potassium (TK and AK), were measured to assess soil quality. We find that the overall soil quality decreases along with KRD progressive gradient. Soil bacterial community compositions are distinguishingly different in KRD stages. The richness and diversity in bacterial community do not significantly change with KRD progression although a slight increase in diversity was observed. A slight decrease in richness was seen in SKRD areas. Soil pH primarily correlates with bacterial community composition. We identified a core microbiome for KRD soils consisting of; Acidobacteria, Alpha-Proteobacteria, Planctomycetes, Beta-Proteobacteria, Actinobacteria, Firmicutes, Delta-Proteobacteria, Chloroflexi, Bacteroidetes, Nitrospirae, and Gemmatimonadetes in this study. Phylum Cyanobacteria is significantly abundant in non-degraded soils, suggesting that Cyanobacterial activities might be correlated to soil quality. Our results suggest that Proteobacteria are sensitive to changes in soil properties caused by the KRD progression. Alpha- and beta-Proteobacteria significantly predominated in SKRD compared to NKRD, suggesting that Proteobacteria, along with many others in the core microbiome (Acidobacteria, Actinobacteria, Firmicutes, and Nitrospirae), were active in nutrient limiting degraded soils. This study demonstrates the relationship of soil properties with bacterial community in KRD areas. Our results fill the gap of knowledge on change in soil bacterial community during KRD progression.</p

    Table_1_Soil pH Is the Primary Factor Correlating With Soil Microbiome in Karst Rocky Desertification Regions in the Wushan County, Chongqing, China.DOCX

    No full text
    <p>Karst rocky desertification (KRD) is a process of land degradation, which causes desert-like landscapes, deconstruction of endemic biomass, and declined soil quality. The relationship of KRD progression with above-ground communities (e.g. vegetation and animal) is well-studied. Interaction of soil desertification with underground communities, such as soil microbiome, however, is vastly unknown. This study characterizes change in soil bacterial community in response to KRD progression. Soil bacterial communities were surveyed by deep sequencing of 16S amplicons. Eight soil properties, pH, soil organic matter (SOM), total and available nitrogen (TN and AN), total and available phosphorus (TP and AP), and total and available potassium (TK and AK), were measured to assess soil quality. We find that the overall soil quality decreases along with KRD progressive gradient. Soil bacterial community compositions are distinguishingly different in KRD stages. The richness and diversity in bacterial community do not significantly change with KRD progression although a slight increase in diversity was observed. A slight decrease in richness was seen in SKRD areas. Soil pH primarily correlates with bacterial community composition. We identified a core microbiome for KRD soils consisting of; Acidobacteria, Alpha-Proteobacteria, Planctomycetes, Beta-Proteobacteria, Actinobacteria, Firmicutes, Delta-Proteobacteria, Chloroflexi, Bacteroidetes, Nitrospirae, and Gemmatimonadetes in this study. Phylum Cyanobacteria is significantly abundant in non-degraded soils, suggesting that Cyanobacterial activities might be correlated to soil quality. Our results suggest that Proteobacteria are sensitive to changes in soil properties caused by the KRD progression. Alpha- and beta-Proteobacteria significantly predominated in SKRD compared to NKRD, suggesting that Proteobacteria, along with many others in the core microbiome (Acidobacteria, Actinobacteria, Firmicutes, and Nitrospirae), were active in nutrient limiting degraded soils. This study demonstrates the relationship of soil properties with bacterial community in KRD areas. Our results fill the gap of knowledge on change in soil bacterial community during KRD progression.</p

    DataSheet1_Integration of RNA molecules data with prior-knowledge driven Joint Deep Semi-Negative Matrix Factorization for heart failure study.docx

    No full text
    Heart failure (HF) is the main manifestation of cardiovascular disease. Recent studies have shown that various RNA molecules and their complex connections play an essential role in HF’s pathogenesis and pathological progression. This paper aims to mine key RNA molecules associated with HF. We proposed a Prior-knowledge Driven Joint Deep Semi-Negative Matrix Factorization (PD-JDSNMF) model that uses a hierarchical nonlinear feature extraction method that integrates three types of data: mRNA, lncRNA, and miRNA. The PPI information is added to the model as prior knowledge, and the Laplacian constraint is used to help the model resist the noise in the genetic data. We used the PD-JDSNMF algorithm to identify significant co-expression modules. The elements in the module are then subjected to bioinformatics analysis and algorithm performance analysis. The results show that the PD-JDSNMF algorithm can robustly select biomarkers associated with HF. Finally, we built a heart failure diagnostic model based on multiple classifiers and using the Top 13 genes in the significant module, the AUC of the internal test set was up to 0.8714, and the AUC of the external validation set was up to 0.8329, which further confirmed the effectiveness of the PD-JDSNMF algorithm.</p

    Fasudil Protects the Heart against Ischemia-Reperfusion Injury by Attenuating Endoplasmic Reticulum Stress and Modulating SERCA Activity: The Differential Role for PI3K/Akt and JAK2/STAT3 Signaling Pathways

    Get PDF
    <div><p>Disordered calcium homeostasis can lead to endoplasmic reticulum (ER) stress. Our previous data showed that time course activation of ER stress contributes to time-related increase in ischemia-reperfusion (I/R) injury. However, it has not been tested whether PI3K/Akt and JAK2/STAT3 pathways play differential roles in reducing ER stress to protect the heart. In the present study, using fasudil which is a specific inhibitor of ROCK, we aimed to investigate whether improved SERCA expression and activity accounts for reduced ER stress by ROCK inhibition, specifically whether PI3K/Akt and JAK2/STAT3 pathways are differentially involved in modulating SERCA activity to reduce ER stress and hence I/R injury. The results showed that during the reperfusion period following 45 min of coronary ligation the infarct size (IS) increased from 3 h of reperfusion (45.4±5.57%) to 24 h reperfusion (64.21±5.43, P<0.05), which was associated with ER stress dependent apoptosis signaling activation including CHOP, Caspase-12 and JNK (P<0.05, respectively).The dynamic ER stress activation was also related to impaired SERCA activity at 24 h of reperfusion. Administration of fasudil at 10 mg/Kg significantly attenuated ROCK activation during reperfusion and resulted in an improved SERCA activity which was closely associated with decreases in temporal activation of ER stress and IS changes. Interestingly, while both PI3K/Akt and JAK2/STAT3 signaling pathways played equal role in the protection offered by ROCK inhibition at 3 h of reperfusion, the rescued SERCA expression and activity at 24 h of reperfusion by fasudil was mainly due to JAK2/STAT3 activation, in which PI3K/Akt signaling shared much less roles.</p> </div

    ROCK activity was measured in the presence of either PI3K/Akt inhibitor, LY294002, or JAK2 inhibitor, AG490, by quantifying the phosphorylation level of ERM.

    No full text
    <p>Representative bands for p-ERM and total ERM were shown for each group rats (n = 6 for either sham or I/R group rats treated with LY294001 or AG490, the other group rats are the same as shown above). All data expressed as mean±SD. * denotes P<0.05 vs. sham group.</p

    Different SERCA isoform expressions were quantified.

    No full text
    <p>Using the same heart tissue described in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0048115#pone-0048115-g002" target="_blank">figure 2</a>, western blotting was performed using specific antibodies to measure the expression levels of different isoforms of SERCA. Panel A showed representative bands of SERCA2a for each group rats with quantification shown in bar graph, Panel B showed quantification of SERCA2b, and Panel C for SERCA3. All data expressed as mean±SD. * denotes P<0.05 vs. Sham groups; †, P<0.05 vs. I/R group at the same time point.</p
    corecore