154 research outputs found

    Brake Strategy Analysis for Industrial Normal-closed Brake Based on Rotational Inertia Test and Simulation

    Get PDF
    Industrial brakes pose the dilemma of weighing brake capability against brake impact since the brake torque cannot be adjusted. On the one hand, the brake torque may be insufficient to stop the movement within a limited distance or parking position. On the other hand, the brake torque may be so high it can damage the transmission chain. In this study, the traditional brake strategy and the field oriented control (FOC) brake strategy were compared through simulation and a rotational inertia test. The influence of the rated brake torque and the open-closed ratio were obtained. Based on the test and simulation results, a semi-empirical formula that defines the relationship between relative brake capability and open-closed ratio was developed. Additional simulations were performed to analyze the performance of the brake in a flexible transmission chain. As an industrial application example, the benefits and the cost of a 'smart brake' based on the FOC brake strategy were analyzed. The results indicate that the equivalent brake torque with the FOC brake strategy is a function of the real-time controllable input and open-closed ratio, which can be conducted during the braking procedure. This can be an efficient way to solve the above problems

    Cangju Qinggan Jiangzhi Decoction Reduces the Development of NonAlcoholic Steatohepatitis and Activation of Kupffer Cells

    Get PDF
    Background/Aims: Nonalcoholic steatohepatitis (NASH) is defined as lipid accumulation with hepatic injury, inflammation and early to moderate fibrosis. Kupffer cells play a crucial role in promoting hepatic inflammation, which further facilitates the development of NASH. Here we investigated the effects of Cangju Qinggan Jiangzhi decoction (CQJD) on high fat diet (HFD) and methionine-choline deficient (MCD) induced mouse NASH pathogenesis. Methods: Mouse NASH models were developed by HFD and MCD diet. The treated mice were divided into three groups: the control group (n = 10), the low-dose CQJD treatment group (n = 10) and the high-dose CQJD treatment group (n = 10). The hepatic injury, inflammation, and apoptotic molecules were evaluated by H&E staining, immunohistochemistry and real-time PCR. Kupffer cells were isolated from control mice and CQJD-treated mice after stimulation by lipopolysaccharide (LPS) and/or palmitic acid. The level of the inflammatory cytokines TNFα, IL1β, and CCL2 was measured by ELISA. Results: The HFD-fed mice displayed significant metabolic, inflammatory, and oxidative stress-related alterations due to hepatic lipid accumulation. CQJD treatment largely normalized the hepatic injury, lowered the ALT/AST level, and reduced the severity of liver inflammation, as revealed by the decreased inflammatory cytokines levels. In vitro, CQJD blocked the activation of LPS- or palmitic acid-primed Kupffer cells in a dose-dependent manner. In the MCD diet-induced NASH mice, similar therapeutic effects of CQJD were also observed. Conclusion: CQJD ameliorates mouse nonalcoholic steatohepatitis. The reduction in liver injury and inflammation induced by CQJD is associated with reduced activation of Kupffer cells. Our results suggest that CQJD is a promising therapeutic strategy in clinical steatohepatitis

    Effects of contusion load on cervical spinal cord:A finite element study

    Get PDF
    Injury of cervical spine is a common injury of locomotor system usually accompanied by spinal cord injury, however the injury mechanism of contusion load to the spinal cord is not clear. This study aims to investigate its injury mechanism associated with the contusion load, with different extents of spinal cord compression. A finite element model of cervical spinal cord was established and two scenarios of contusion injury loading conditions, i.e. back-to-front and front-to-back loads, were adopted. Four different compression displacements were applied to the middle section of the cervical spinal cord. The distributions of von Mises stress in middle transverse cross section were obtained from the finite element analysis. For the back-to-front loading scenario, the stress concentration was found in the area at and near the central canal and the damage may lead to the central canal syndrome from biomechanical point of view. With the front-to-back load, the maximum von Mises stress located in central canal area of gray matter when subject to 10% compression, whilst it appeared at the anterior horn when the compression increased. For the white matter, the maximum von Mises stress appeared in the area of the anterior funiculus. This leads to complicated symptoms given rise by damage to multiple locations in the cervical spinal cord. The illustrative results demonstrated the need of considering different loading scenarios in understanding the damage mechanisms of the cervical spinal cord, particularly when the loading conditions were given rise by different pathophysiological causes

    User experience evaluation method based on online product reviews

    Get PDF
    Evaluating the quality of the user experience (UX) of existing products is important for new product development. Conventional UX evaluation methods, such as questionnaire, have the disadvantages of the great subjective influence of investigators and limited number of participants. Meanwhile, online product reviews on e-commerce platforms express user evaluations of product UX. Because the reviews objectively reflect the user opinions and contain a large amount of data, they have potential as an information source for UX evaluation. In this context, this study explores how to evaluate product UX through using online product reviews. A pilot study is conducted to define the key elements of a review. Then, a systematic method of product UX evaluation based on reviews is proposed. The method includes three parts: extraction of key elements, integration of key elements, and quantitative evaluation based on rough number. The effectiveness of the proposed method is demonstrated by a case study using reviews of a wireless vacuum cleaner. Based on the proposed method, designers can objectively evaluate the UX quality of existing products and obtain detailed suggestions for product improvement

    Tracing the evolving dynamics and research hotspots of spinal cord injury and surgical decompression from 1975 to 2024: a bibliometric analysis

    Get PDF
    BackgroundExploration of the benefits and timing of surgical decompression in spinal cord injury (SCI) has been a research hotspot. However, despite the higher volume and increasing emphasis on quality there remains no bibliometric view on SCI and surgical decompression. In this study, we aimed to perform bibliometric analysis to reveal the core countries, affiliations, journals, authors, and developmental trends in SCI and surgical decompression across the past 50 years.MethodsArticles and reviews were retrieved from web of science core collection between 1975 and 2024. The bibliometrix package in R was used for data analysis and visualizing.ResultsA total of 8,688 documents were investigated, indicating an ascending trend in annual publications. The USA and China played as the leaders in scientific productivity. The University of Toronto led in institutional productions. Core authors, such as Michael G. Fehlings, showed high productivity, and occasional authors showed widespread interests. Core journals like Spine and Spinal Cord served as beacons in this field. The interaction of core authors and international collaboration accentuated the cross-disciplinary feature of the field. Prominent documents emphasized the clinical significance of early decompression in 24 h post SCI.ConclusionBased on comprehensive bibliometric analysis and literature review, we identified the hotspots and future directions of this field: (1) further investigation into the molecular and cellular mechanisms to provide pre-clinical evidence for biological effects of early surgical decompression in SCI animal models; (2) further evaluation and validation of the optimal time window of surgical decompression based on large cohort, considering the inherent heterogeneity of subpopulations in complicated immune responses post SCI; (3) further exploration on the benefits of early decompression on the neurological, functional, and clinical outcomes in acute SCI; (4) evaluation of the optimal surgical methods and related outcomes; (5) applications of artificial intelligence-based technologies in spinal surgical decompression

    Intelligent decision-making method for vehicles in emergency conditions based on artificial potential fields and finite state machines

    Get PDF
    This study aims to propose a decision-making method based on artificial potential fields (APFs) and finite state machines (FSMs) in emergency conditions. This study presents a decision-making method based on APFs and FSMs for emergency conditions. By modeling the longitudinal and lateral potential energy fields of the vehicle, the driving state is identified, and the trigger conditions are provided for path planning during lane changing. In addition, this study also designed the state transition rules based on the longitudinal and lateral virtual forces. It established the vehicle decision-making model based on the finite state machine to ensure driving safety in emergency situations. To illustrate the performance of the decision-making model by considering APFs and finite state machines. The version of the model in the co-simulation platform of MATLAB and CarSim shows that the developed decision model in this study accurately generates driving behaviors of the vehicle at different time intervals. The contributions of this study are two-fold. A hierarchical vehicle state machine decision model is proposed to enhance driving safety in emergency scenarios. Mathematical models for determining the transition thresholds of lateral and longitudinal vehicle states are established based on the vehicle potential field model, leading to the formulation of transition rules between different states of autonomous vehicles (AVs)

    Highly stable Zn anodes realized by 3D zincophilic and hydrophobic interphase buffer layer

    Get PDF
    Aqueous zinc-ion batteries (AZIBs) are promising contenders for energy storage systems owing to their low cost and high safety. However, their practical application is hindered by uncontrolled Zn dendrites and other side reactions. Here, the three-dimensional (3D) TiO2/Cu2Se/C heterostructure layer derived from MXene/Cu-MOF is constructed on the Zn anode to control the deposition/dissolution behavior, which has numerous active sites, better electrical conductivity and excellent structural stability. Based on DFT calculation, the built-in electric field (BIEF) formed of TiO2/Cu2Se/C can enhance charge transfer and ionic diffusion to inhibit the dendrites. Furthermore, hydrophobic coating has the ability to impede the corrosion and hydrogen evolution reaction (HER) of zinc anode. Thus, TiO2/Cu2Se/C@Zn enable the stable and reversible Zn plating/stripping process with the outstanding lifetime of 1100 h at 2 mA·cm–2 and even 650 h at 10 mA·cm–2. The batteries constructed with commercial MnO2 cathodes demonstrate the remarkable capacity (248.7 mAh·g−1 at 0.1 A·g−1) and impressive cycle stability (with 71.3% capacity retention after 300 cycles). As well as extending the life of AZIBs, this study is also motivating for other metal anode based secondary batteries

    Toward 6G TKμ\mu Extreme Connectivity: Architecture, Key Technologies and Experiments

    Full text link
    Sixth-generation (6G) networks are evolving towards new features and order-of-magnitude enhancement of systematic performance metrics compared to the current 5G. In particular, the 6G networks are expected to achieve extreme connectivity performance with Tbps-scale data rate, Kbps/Hz-scale spectral efficiency, and μ\mus-scale latency. To this end, an original three-layer 6G network architecture is designed to realise uniform full-spectrum cell-free radio access and provide task-centric agile proximate support for diverse applications. The designed architecture is featured by super edge node (SEN) which integrates connectivity, computing, AI, data, etc. On this basis, a technological framework of pervasive multi-level (PML) AI is established in the centralised unit to enable task-centric near-real-time resource allocation and network automation. We then introduce a radio access network (RAN) architecture of full spectrum uniform cell-free networks, which is among the most attractive RAN candidates for 6G TKμ\mu extreme connectivity. A few most promising key technologies, i.e., cell-free massive MIMO, photonics-assisted Terahertz wireless access and spatiotemporal two-dimensional channel coding are further discussed. A testbed is implemented and extensive trials are conducted to evaluate innovative technologies and methodologies. The proposed 6G network architecture and technological framework demonstrate exciting potentials for full-service and full-scenario applications.Comment: 15 pages, 12 figure

    Genome-wide analysis of long non-coding RNAs (lncRNAs) in tea plants (Camellia sinensis) lateral roots in response to nitrogen application

    Get PDF
    Tea (Camellia sinensis) is one of the significant cash crops in China. As a leaf crop, nitrogen supply can not only increase the number of new shoots and leaves but also improve the tenderness of the former. However, a conundrum remains in science, which is the molecular mechanism of nitrogen use efficiency, especially long non-coding RNA (lncRNA). In this study, a total of 16,452 lncRNAs were identified through high-throughput sequencing analysis of lateral roots under nitrogen stress and control conditions, of which 9,451 were differentially expressed lncRNAs (DE-lncRNAs). To figure out the potential function of nitrogen-responsive lncRNAs, co-expression clustering was employed between lncRNAs and coding genes. KEGG enrichment analysis revealed nitrogen-responsive lncRNAs may involve in many biological processes such as plant hormone signal transduction, nitrogen metabolism and protein processing in endoplasmic reticulum. The expression abundance of 12 DE-lncRNAs were further verified by RT-PCR, and their expression trends were consistent with the results of RNA-seq. This study expands the research on lncRNAs in tea plants, provides a novel perspective for the potential regulation of lncRNAs on nitrogen stress, and valuable resources for further improving the nitrogen use efficiency of tea plants
    • …
    corecore