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Tea (Camellia sinensis) is one of the significant cash crops in China. As a leaf crop,

nitrogen supply can not only increase the number of new shoots and leaves but also

improve the tenderness of the former. However, a conundrum remains in science,

which is the molecular mechanism of nitrogen use efficiency, especially long non-

coding RNA (lncRNA). In this study, a total of 16,452 lncRNAs were identified

through high-throughput sequencing analysis of lateral roots under nitrogen

stress and control conditions, of which 9,451 were differentially expressed

lncRNAs (DE-lncRNAs). To figure out the potential function of nitrogen-

responsive lncRNAs, co-expression clustering was employed between lncRNAs

and coding genes. KEGG enrichment analysis revealed nitrogen-responsive

lncRNAs may involve in many biological processes such as plant hormone signal

transduction, nitrogen metabolism and protein processing in endoplasmic

reticulum. The expression abundance of 12 DE-lncRNAs were further verified by

RT-PCR, and their expression trends were consistent with the results of RNA-seq.

This study expands the research on lncRNAs in tea plants, provides a novel

perspective for the potential regulation of lncRNAs on nitrogen stress, and

valuable resources for further improving the nitrogen use efficiency of tea plants.

KEYWORDS

long non-coding RNAs, nitrogen stress, RNA-seq, Camellia sinensis, lateral roots
Introduction

As a crucial element in plant growth, nitrogen is an essential component of biological

compounds such as nucleic acid, protein, chlorophyll, and plant hormones. Nitrogen also

regulates plants’ absorption and utilization of other elements, such as phosphorus and

potassium (Novoa and Loomis, 1981; Xu et al., 2012). In agricultural production, a large
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amount of synthetic nitrogen fertilizer has been used in crop fields to

promote the yield of crops (Good and Beatty, 2011; Zhang et al.,

2012). Nitrogen fertilizer abuse increases agricultural costs and

becomes one of the chief culprits of environmental pollution. (Han

et al., 2015). Therefore, reducing the application of nitrogen fertilizer

and improving the nitrogen use efficiency of crops are momentous to

agriculture development. To this end, more and more researchers

have carried out studies on crops with low nitrogen tolerance,

providing new solutions for the underlying molecular mechanisms

of nitrogen regulation and the improvement of nitrogen use efficiency

(Kant et al., 2011; Krapp, 2015; Hu et al., 2020). Plant lateral roots

(LRs) can absorb nitrogen in the form of organic (amino acids and

peptides) and inorganic (nitrate and ammonium nitrogen), and

different nitrogen sources can regulate the growth of LRs

(Gruffman et al., 2014). The number and location of lateral roots

determine the spatial configuration of roots, which means that their

formation and development will directly affect plant growth (Duan

et al., 2013). Nitrate use was reported to be positively associated with

the development of LRs (Lynch, 2013). In other words, reducing the

application of nitrate fertilizer can promote the growth of LRs,

thereby improving the plant’s nutrient uptake capacity and nitrogen

use efficiency (Duan et al., 2013).

Long non-coding RNA (lncRNA) is an RNA transcript longer

than 200 nucleotides with no or limited protein-coding capacity

(Kung et al., 2013; Kopp and Mendell, 2018). According to their

genomic location, they are usually divided into i (intron lncRNAs), o

(overlapping lncRNAs), u (intergenic lncRNAs), and x (antisense

lncRNA) types (Roberts et al., 2011). Much evidence, including

epigenetics, transcriptional and post-transcriptional regulation in

the form of RNA, can prove that lncRNAs have regulatory

functions in gene expression (Sunkar et al., 2007; Caley et al.,

2010). Through next-generation sequencing technology and

bioinformatics methods, many lncRNAs have been found in

Arabidopsis, wheat, maize, rice, and other model plants. It is

significant in flowering regulation, photomorphogenesis, stress

response, and other growth pathways. (Wang et al., 2014;

Chekanova, 2015; Wang and Chekanova, 2017; Zhao et al., 2018;

Liang et al., 2022). For example, through genome-wide analysis of

Arabidopsis thaliana full-length cDNA database, 76 ncRNAs were

identified, including 5 small interfering RNAs (siRNA) precursors

and 14 natural antisense transcripts of protein-coding genes. A set of

127 RNA sequencing samples including total RNAseq datasets and

PacBio fl-cDNA datasets in maize was used for identifying 1,077

differentially multiple abiotic stress-responsive TE-lncRNAs, and 39

are hubs in co-expression networks, including a small number that

are evolutionary conserved (Lv et al., 2019). In the study of low

nitrogen stress in barley, 498 lncRNAs were identified, of which 487

were newly discovered, and 56 lncRNAs responsive to low nitrogen

stress were identified (Chen et al., 2020). 637 lncRNAs responsive to

nitrogen and 664 lncRNAs responsive to drought were identified in

maize seedlings (Zhang et al., 2014; Lv et al., 2016). However, studies

of lncRNAs in many non-model plants are relatively limited, and

correspondingly, studies on the genome-wide identification and

analysis of tea plants lncRNAs are relatively few. Besides, there have

been no published studies on the molecular mechanism of lncRNA

response to nitrogen in tea plants.
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In China, tea (Camellia sinensis) is one of the vital cash crops and

stands out among traditional industries. As a leaf crop, tea plants

consume a lot of nitrogen nutrition and have high requirements for

soil nitrogen (Venkatesan et al., 2004; Zhu et al., 2014). The results

showed that nitrogen nutrition could promote the germination and

elongation of tea shoots, increase the number, weight and area of new

shoots and leaves, and advance the tenderness of new shoots (Ruan

et al., 2019). Nitrogen can benefit tea plants’ vegetative growth and

thwart their reproductive growth, thus increasing yield (Ruan et al.,

2019). Within a reasonable dosage range, applying nitrogen in tea

gardens can enrich the types of tea aroma substances, improve the

freshness of tea leaves, and increase the content of amino acids, tea

polyphenols, catechins and chlorophyll, especially free amino acids.

(Ruan et al., 2010; Lin et al., 2021).Therefore, improving nitrogen

absorption and utilization efficiency has been a focal point of tea

nutrition research in recent years. Screening and breeding tea varieties

with high nitrogen utilization is paramount to the tea industry (Hu

et al., 2020). Most previous studies focused on revealing the coding

genes regulated by nitrogen (Xia et al., 2017; Wei et al., 2018). Thanks

to the release of the tea genome, we used High-Throughput

Sequencing technology to analyze the lncRNAs expression profile of

tea roots under high and low nitrogen conditions, analyzed these

lncRNAs regulatory coding genes, and identified the function of

lncRNAs involved in nitrogen metabolism. In conclusion, our

research results provide many valuable references for clarifying the

response mechanism of lncRNAs to nitrogen in LRs of tea plants and

expand a new path for improving the nitrogen use efficiency of

tea plants.
Materials and methods

Plant materials and nitrogen treatments

Purebred tea seeds (Camellia sinensis cv. Fuding dabai) were

germinated in perlite and then cultured in nutrient solution (0.75mM

(NH4)2SO4, 0.25 mM Ca(NO3)2•4(H2O)3, 0.05 mM KH2PO4, 0.35

mMK2SO4, 0.395 mM CaCl2, 0.21 mMMgSO4, 35.0 mMNaFeEDTA,

46.1 mM H3BO3, 2.0 mM MnSO4, 0.3 mM CuSO4, 2.0 mM ZnSO4 and

0.5 mM Na2MoSO4). Nitrogen was divided into three concentrations:

0.25 mM (labeled as low nitrogen, LN), 1 mM (labelled as control,

CK), and 2.5 mM (labelled as high nitrogen, HN). The control

experiment (1 mM) was supplemented with 0.75 mM ammonium

and 0.25 mM nitrate using (NH4)2SO4 and Ca (NO3)2•4(H2O),

respectively, which was the best combination of N concentration

for seedlings growth. The growth conditions of seedlings in the light

culture box were as follows: 28/25°C (day/night), 75% relative

humidity, 16/8 h (light/darkness) photoperiod, and 300 mmol−2 s−1

light intensity. The liquid culture medium was changed every 5 days.

The lateral roots of the seedlings were sampled after 10 weeks of

seedling growth. The control and nitrogen treatments were repeated

three times (CK-1, CK-2, CK-3; LN-1, LN-2, LN-3, HN-1, HN-2,

HN-3). The samples were immediately soaked in liquid nitrogen and

stored in a refrigerator of -80°C for RNA-seq analysis and qRT-

PCR verification.
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RNA isolation, library construction and
RNA sequencing

The total RNA of LH, CK, HN was isolated with the plant RNA

extraction kit with DNase (TIANDZ, Inc., Beijing, China) according

to the manufacturer’s protocol. RNA was purified and concentrated

using NanoDrop2000 Spectrophotometer (Thermo Fisher Scientific,

USA), 1.2% agarose gel electrophoresis, and Agilent 2100 Bioanalyzer

(Agilent Technologies, Inc., Santa Clara, CA, USA). High-quality

RNA samples are used for library construction, and then the total

RNA-seq library is constructed and sequenced using the

IlluminaHiSeq platform. All sequencing data were deposited in the

National Center for Biotechnology Information (NCBI) Sequence

Read Archive (accession number PRJNA595712).
Transcriptome assembly

The SolexaQA++ v3.1 program was applied to execute quality

trimming using the Q30 value (Cox et al., 2010). After removing

rRNA, low-quality reads, aptamer sequences, and contaminating

reads, the remaining clean reads were aligned with the reference

genome of C. sinensis var. sinensis by Hierarchical Indexing of Spliced

Transcript Alignment (HISat) software (Pertea et al., 2016; Xia et al.,

2017). Use the gffCompare program to annotate the assembled

transcript and the unknown transcript and then filter out possible

lncRNAs by pfam databases (Kong et al., 2007; Han et al., 2016a; El-

Gebali et al., 2018).
Identification of LncRNAs

In this study, a strict calculation method was used to determine

the lncRNA of tea plants (Iyer et al., 2015; Xiao et al., 2015). The

primary screening of transcripts should meet the following

conditions: with a class code of “i”, “x”, “u”, “o”, and “e”, a length ≥

200 bp, and fragments per kilobase of transcript per million mapped

reads (FPKM) value ≥ 0.1(Kelley and Rinn, 2012; Luo et al., 2022).

Subsequently, transcripts were compared with uniref90 and Pfam

protein databases using the CPC2 program to evaluate their protein-

coding potential (Kang et al., 2017). Transcripts that meet these

conditions are eventually considered as candidates for lncRNAs for

further analysis: Non-coding transcripts larger than 200 bp; FPKM >

1; a CPC score < -1.
Differential expression analysis

The expression level of lncRNAs was quantitatively detected by

FPKM value by StringTie software. DESeq2 software package (1.10.1)

was used to analyze the differential expression between nitrogen

concentration and control treatments. The P value of the result is

adjusted by the methods of Benjamini and Hochberg to control the

false discovery rate. The lncRNA with the adjustment value P < 0.01

and the absolute value |log2(FPKM) ratio| ≥ 1 by DESeq is considered

to be differentially expressed (Wan et al., 2020).
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KEGG pathway enrichment analysis

To elucidate the potential functions of differentially expressed

lncRNAs (DE-lncRNAs), co-expression analysis between Nitrogen-

responsive lncRNAs and coding genes was employed for generating

clusters with different expression patterns. Coding genes of clusters

were used for the KEGG pathway enrichment by clusterProfiler (Yu

et al., 2012). In the KEGG enrichment analysis, a false discovery rate ≤

0.05 was used as a criterion to identify significantly enriched pathways

(Altschul et al., 1990).
Validation and quantification of LncRNAs

Total RNA was extracted from the nine samples (CK-1, CK-2,

CK-3; LN-1, LN-2, LN-3, HN-1, HN-2, HN-3) using Trizol reagent

(Invitrogen). To validate the lncRNAs, Real-time PCR was performed

Bio-Rad Real-time thermal cycler CFX96 with SYBR Premix ExTaq™

Kit (Takara Co. Ltd., Japan). The glyceraldehyde-3-phosphate

dehydrogenase (GAPDH) and b-actin were used as controls. The 2-

DDCt method was used to determine the relative expression levels

(Livak and Schmittgen, 2001). Three biological replicates per sample.

All qRT-PCR primers were designed with NCBI primer-BLAST

(https://www.ncbi.nlm.nih.gov/tools/primer-blast/). Differences

between groups were analyzed by one-way analysis of variance and

Duncan’s test, and P < 0.05 was considered to be significantly different

between treatment groups.
Result

Phenotypic response of C.sinensis lateral
roots to nitrogen treatments

In different nitrogen treatments, the growth of the underground

part of the seedlings changed significantly in the tenth week

(Figure 1A). The main results were as follows: with the increase in

nitrogen concentration, the number and the length of lateral roots

decreased significantly (Figure 1B, C). This showed that low nitrogen

conditions could promote the growth of lateral roots of seedlings. On

the contrary, it was inhibited under high nitrogen conditions.
Genome−wide prediction of LncRNAs
candidates in C. sinensis

To investigate the lncRNAs in tea plants under nitrogen

treatments, transcriptome sequencing analysis of three biological

repeats of HN, CK and HN was carried out using the Illumina

HiSeq2500 platform. Each sample had an average base of 9GB, and

the lowest value of Q30 was 92.83% (Table S1). All clean reads were

compared with the tea plants reference genome. A total of 86814

transcripts were identified, and the results showed that 38% (33515)

of transcripts matched exactly and entirely with the intron chain

and 30% (26279) were annotated as multi-exon with at least one

junction match, while 7% (6049) transcripts were annotated as
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containment of reference (reverse containment) (Figure 2A).

Total RNA-seq technology could recover transcripts located

in gene intergenic or intronic regions. After filtering the data

through CPC2 and Pfam, a total of 16,452 candidate transcripts

were obtained.
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DE-lncRNAs under nitrogen treatments

To identify nitrogen-responsive lncRNAs in LRs of tea plants, the

expression of lncRNAs was compared between the LN, CK and HN

treatments. Based on the standardized FPKM value, 9,451 DE-
B

C

A

FIGURE 2

(A) Compare the category code generated by CuffCompare with the tea plants genome, and then calculate the percentage. “=“: complete, exact match
of intron chain; “j”: multi-exon with at least one junction match; “k”: containment of reference (reverse containment); “m”: retained intron (s), all introns
matched or retained; “n”: retained introns (s), not all introns matched/covered.; “u”: none of the above (unknown, intergene); “o”: other same strand
overlap with reference exons; “i”: fully contained within a reference intron; “p”: possible polymerase run-on (no actual overlap). (b~c) Analysis of
transcripts in LRs (lateral roots) of tea plant under three nitrogen treatments, LN, CK and HN, with three replicates for each. (B) Cluster heat map of DE-
lncRNAs (differentially expressed lncRNAs) in three treatments. (C) Venn diagram of common DE-lncRNAs.
B

C

A

FIGURE 1

(A) Lateral roots (LRS) phenotype of low-nitrogen (LN), normal-nitrogen (CK) and high-nitrogen (HN). (B) The length of LRs in hydroponics culture. (C) The
number of LRs in hydroponics culture. Scale bars = 2 cm. Values are mean ± S.D. *P ≤ 0.5, **P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001, (Student’s t-test).
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lncRNAs were revealed in LN, CK, and HN treatments (Figure 2B).

Moreover, 357 DE-lncRNAs overlapped in those treatments

(Figure 2C). Furthermore, in the comparison of LN and CK

treatments, there were 6,455 DE-lncRNAs, of which 3,805 were up-

regulated and 2,650 were down-regulated (Figure 3A); in the

comparison of HN and CK treatments, there were 4,844 DE-

lncRNAs, of which 2,879 were up-regulated and 1,965 were down-

regulated (Figure 3B); and 3,431 DE-lncRNAs were identified in the

comparison of HN and LN, of which 1,780 were up-regulated and

1,651 were down-regulated (Figure 3C).
Enrichment analysis of nitrogen-responsive
coding genes

The nitrogen-responsive coding genes were submitted into KEGG

pathway enrichment, and the top 20 enriched pathways were shown

in (Figure 3D-F). In the LN vs. CK comparisons, 2,161 coding genes

were annotated in 128 KEGG pathways. Among them, the most

enriched pathway was metabolic pathways (447), followed by

biosynthesis of secondary metabolites (248), photosynthesis-

antenna proteins (61) and starch and sucrose metabolism (35)

(Figure 3D, Table S2). In addition, 1,514 coding genes were

enriched in 116 KEGG pathways between HN vs. CK comparisons.

Coding genes identified in metabolic pathways (327) were the most

abundant, followed by biosynthesis of secondary metabolites (197),

protein processing in endoplasmic reticulum (42) and amino sugar

and nucleotide sugar metabolism (28) (Figure 3E, Table S3). Among

the LN vs. HN comparisons, 1,140 coding genes were verified in 113

KEGG pathways. Moreover, the most significant pathway was

metabolic pathways (242), followed by Biosynthesis of secondary

metabolites (151), plant-pathogen interaction (36) and glutathione

metabolism (20) (Figure 3F, Table S4).
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Co-expression clustering analysis of
nitrogen-responsive LncRNAs and coding
genes in lateral roots development

In different nitrogen treatments, the lncRNAs with the same trend

of coding genes expression were selected and annotated by KEGG

(Figure 4). In LN treatment, compared with CK and HN treatments,

the up-regulated and down-regulated DE-lncRNAs were clustered into

cluster1 and cluster2, respectively, and then these up-regulated and

down-regulated DE-lncRNAs were annotated to cluster 1 and cluster 2

KEGG pathways, severally. The down-regulated DE-lncRNAs

compared with CK and HN was shown in cluster1. The cluster 1

KEGG pathway identified that 720 DE-lncRNAs were annotated in

104 KEGG pathways. The pathway with the most aggregation was

ribosome (65), followed by protein processing in endoplasmic

reticulum (26) and RNA transport (20) (Table S5); the up-regulated

DE-lncRNAs were shown in cluster 2, and KEGG pathway (cluster 2)

identified that 1311 DE-lncRNAs were annotated in 122 KEGG

pathways, such as metabolic pathways (275), biosynthesis of

secondary metabolites (145) and plant-pathogen interaction (32)

(Table S6). In CK treatment, compared with LN and HN treatments,

the up-regulated and down-regulated DE-lncRNAs were clustered into

cluster 3 and 4, respectively, and then these up and down-regulated

DE-lncRNAs were annotated to cluster 3 and cluster 4 KEGG

pathways, severally. The down-regulated DE-lncRNAs were shown

in cluster 3. The KEGG pathway (cluster 3) identified that 971 DE-

lncRNAs were annotated in 121 KEGG pathways, such as metabolic

pathways (202), biosynthesis of secondary metabolites (114) and

carbon metabolism (38) (Table S7); the up-regulated DE-lncRNAs

were shown in cluster 4, and KEGG pathway (cluster 4) identified that

815 DE-lncRNAs were annotated in 116 KEGG pathways, such as

biosynthesis of secondary metabolites (99), biosynthesis of amino acids

(25), plant hormone signal transduction (24) (Table S8). In HN
B C

D E F

A

FIGURE 3

(A-C) Volcano map of DE-coding genes in LRs of tea plants under different nitrogen conditions. (A) LN vs CK. (B) HN vs CK. (C) HN vs LN. (d~f) KEGG
pathways analysis. Top 20 pathways for the predicted coding genes of DE-coding genes. (D) LN vs CK. (E) HN vs CK. (F) HN vs LN.
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treatment, compared with LN and CK treatments, the up-regulated

and down-regulated DE-lncRNAs were clustered into cluster 5 and

cluster 6, respectively, and then these up and down-regulated DE-

lncRNAs were annotated to cluster 5 and cluster 6 KEGG pathways,

severally. The up-regulated DE-lncRNAs were shown in cluster 5, and

KEGG pathway (cluster 5) identified that 993 DE-lncRNAs were

annotated in 114 KEGG pathways, such as protein processing in

endoplasmic reticulum (45), ribosome (30) and RNA transport (25)

(Table S9); the down-regulated DE-lncRNAs were shown in cluster 6,

and KEGG pathway (cluster 6) identified that 556 DE-lncRNAs were

annotated in 102 KEGG pathways, such as metabolic pathways (114),

biosynthesis of secondary metabolites (74), and plant hormone signal

transduction (25) (Table S10). The clustering results showed that

nitrogen treatment could affect the expression of lncRNAs,

associated with the nitrate transporter and controlling the growth of

tea plants LRs. In addition, nitrogen treatment regulated the hormone

signals of tea plants LRs, associated with auxin synthesis and auxin

signals genes.
Validation of lncRNAs expression
using qRT-PCR

To determine the reliability of RNA-seq transcriptome results, 12

DE-lncRNAs were selected for qRT-PCR verification. The result

showed that the expression level of these DE-lncRNAs was in line

with that of transcripts estimated from sequence data, suggesting the

repeatability and accuracy of RNA-seq data (Figure 5). The identified

DE-lncRNAs sequences were recorded in Table S11.
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Discussion

Improving nitrogen use efficiency is of great significance in

agricultural production and environmental protection.To promote

nitrogen use efficiency and adapt to barren land, improving the

resistance mechanism to low nitrogen or nitrogen deficiency is

advisable. (Han et al., 2015). Previous studies have shown that the

early nodulin gene was found in rice, which was identified by

transcriptional analysis under low nitrogen stress and was related to

increased nitrogen use efficiency (Bi et al., 2009). At the same time,

barley is becoming a model crop for similar research because of its

adaptability to barren land (Chen et al., 2018). Due to the particularity

system of tea plants, nitrogen use efficiency is critical in recent

research (Zhang et al., 2020). It includes nitrogen absorption

efficiency, utilization efficiency and transport efficiency.

During past years, research on improving the nitrogen use

efficiency of tea plants has been the top priority. In addition,

nitrogen can also regulate the synthesis and transport of auxin,

gibberellin, and other plant hormones through nitrogen signals,

thus affecting the growth and development of plant LRs (Sun et al.,

2017). In previous studies, nitrogen deficiency induced the expression

of high-affinity nitrate transporters NRT1, NRT2.4 and NRT2.5 in

Arabidopsis thaliana roots (Lezhneva et al., 2014). Moreover, NRT1

and NRT2 can transport not only NO�
3 but also auxin. So, under a low

nitrogen environment, NRT1 and NRT2 are highly expressed and

regulate the formation of LRs by inducing auxin accumulation and

transport (Krouk et al., 2010). In this study, low nitrogen could also

promote the growth of tea plants’ LRs. However, accumulating

evidence shows that lncRNAs are momentous in various plants’
FIGURE 4

Nitrogen-responsive lncRNAs enrichment plot from KEGG pathway analysis for different coexpressed clusters.
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biological processes, but their characteristics, expression patterns and

potential functions in response to nitrogen in tea plants have not been

reported. In this study, we identified the lncRNAs of tea plants

according to the latest genome of tea plants, and confirmed the

lncRNAs related to nitrogen response and LRs development. This

study has gained discoveries of the regulatory function of lncRNAs on

nitrogen in tea plants and provides a resource for further study of the

molecular mechanism of nitrogen response.

In previous studies, 7,245 lncRNA were identified in RNA-seq

analysis under nitrogen-deficiency treatment in maize, of which 673

were corresponding to low nitrogen deficiency (Lv et al., 2016). 918

differentially expressed lncRNAs was found in the study of nitrogen

deficiency in rice (Shin et al., 2018). In the research on nitrogen

deficiency in Populus, 126 differentially expressed lncRNAs were

identified in N-starved (Chen et al., 2016). In this study, 16452

candidates lncRNAs revealed in LN and CK and HN treatments were

selected from 9 LRs samples of tea plants. The results showed that 9451

lncRNAs with different functions were differentially expressed under

nitrogen treatments. Therefore, these lncRNAs are involved in the

response of tea plants to nitrogen stress, and the results can provide

candidate genes for the study of nitrogen utilization in tea plants.

In this study, the results of KEGG pathway analysis showed that

the DE-lncRNAs of the three treatments existed in multiple KEGG

pathways, and the top three were “metabolic pathways”, “biosynthesis

of secondary metabolites”, and “glutathione metabolism” (Figure 4).

The results not only revealed that these pathways were related to

nitrogen stress response, but also indicated that some components

were involved in nitrogen stress response processes simultaneously. In

addition, each group has specific DEGS and enrichment pathways,

which means that there are different response mechanisms under

different N stress. In addition, the up-regulated and down-regulated

DE-lncRNAs of each group compared with the other groups were

analyzed by KEGG pathway. The results demonstrated response

mechanism varied with different N stresses.

In LN treatment, compared to the other two groups (CK, HN), up-

regulated DE-lncRNAs were mainly annotated in “metabolic pathways”

and “biosynthesis of secondary metabolites”. This indicated that

nitrogen deficiency could promote the expression of coding genes in

these two pathways. Considering the involvement of stress response: It

has been reported that for many plant species, an increase in plant
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secondary metabolism caused by biotic or abiotic stress is part of the

stress response (Sathiyabama et al., 2016). In line with this, previous

studies manifested that the production of terpenoids and cannabinoids

in plants is stimulated under the stress of nitrogen and phosphorus

nutrient deficiency. The results showed a negative correlation between

secondary metabolism and plant stress. That is, the concentration of

secondary metabolites decreased with the increase of nitrogen supply,

and the optimal nitrogen condition and high nitrogen condition in

plants have nothing to do with secondary metabolism (Shiponi and

Bernstein, 2021a; Shiponi and Bernstein, 2021b). The result is

supported by many other plant studies. Furthermore, the carbon

nutrient balance hypothesis points out that the production of

nitrogen-rich primary metabolites is limited under low nitrogen

conditions. Plant metabolism and energy consumption changed from

the production of nitrogen-containing metabolites to the production of

nitrogen-free metabolites, promoting the accumulation of secondary

metabolites (Massad et al., 2012; Albornoz, 2016). This result is also

consistent with the results of DE-lncRNAs analysis in our study.

Low-affinity transport system (LATS) and high-affinity transport

system (HATS) are two NO3 uptake systems in plants They are

mediated by nitrate transporter 1 (NRT1) and nitrate transporter 2

(NRT2), respectively (Tong et al., 2005; Wang et al., 2012). The results

showed that with the decrease in nitrogen use efficiency, high-affinity

nitrate transporters (NRT2) activity replaced low-affinity nitrate

transporters (NRT1) activity, so NRT2 may be the key target to

improve nitrogen use efficiency, especially under the condition of low

nitrogen condition (Huang et al., 1999). Moreover, studies have

shown that under low nitrogen conditions, NRT2 not only

transports NO3, but also participates in the transport of auxin, thus

promoting plant root growth (Krouk et al., 2010). In this study, the

up-regulated DE-lncRNA in low nitrogen treatment were clustered in

the “nitrogen metabolism” pathway, including LJ.29731 and LJ.29732

corresponding to coding genes NRT2.3 and NRT2.4. This indicates

that lncRNAs cis-regulate the expression of corresponding NRT2

coding genes under low nitrogen treatment and participate in the

growth of lateral roots of tea plants (Figure 1, Figure 4, cluster2).

Plant hormones can regulate plant growth through different signal

pathways and contribute to cell elongation, seed germination, flower

formation, leaf morphogenesis, fruit development and so on. The same

is true for resistance to biotic and abiotic stress (Qaadt, 2020). In this
FIGURE 5

Comparison of expression profiles of selected lncRNAs as determined by Real Time-PCR.
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study, the normal nitrogen (CK), compared with the other two groups

(LN and HN), up-regulated DE-lncRNAs were clustered in the “plant

hormone signal transduction pathway”. Auxin is a crucial signal of

plant growth and the higher the concentration, the more inhibited it is.

At the same time, the precise distribution of auxin in plants determines

the top-down organ morphology of plants (De Smet et al., 2010). AUX/

IAA family transcription factors and auxin response factor (ARF) are

two main transcription factors in the signal transduction pathway. In

the auxin signal transduction pathway, ARF binds to the auxin

response element in the auxin response gene promoter to activate the

expression of the auxin response genes (Figueiredo and Strader, 2022).

At low auxin concentration, AUX/IAA binds to ARF to form a

heterodimer, which inhibits the transcription of ARFs, and then the

expression of ARF-regulated auxin-responsive genes was inhibited.

When auxin rises to a certain concentration, auxin binds to its

receptor SCF-TIRl (Han et al., 2020). By interacting with AUX/IAA,

AUX/IAA proteins were ubiquitinated and ARFs were released. Thus,

auxin response genes are expressed and plants undergo a series of

growth responses (Figueiredo and Strader, 2022). In this study,

compared with CK and HN treatments, 14 DE-lncRNAs coding to

ARF genes were up-regulated in LN treatment, which indicated that

lncRNAs regulated the expression of ARF genes in low nitrogen

treatment, thus increasing the transcriptional activity of ARFs (Table

S12). Jasmonic acid (JA) and their derivatives methyl jasmonate

(MeJA) play an essential role in plant morphological, physiological

and biochemical processes in response to drought, cold and salt stress

(Ali and Baek, 2020; Zhang et al., 2021). Different nitrogen

concentrations are also involved in the metabolism and synthesis of

jasmonic acid. In previous studies, JAR1 (jasmonate resistant 1)-

activated JA and ethylene signaling pathways could inhibit roots

growth in Boron deficiency, and low nitrogen could inhibit the

content of jasmonic acid (Li et al., 2020; Huang et al., 2021). In this

study, three DE-lncRNAs (LJ.13289, LJ.13289, LJ.33982) corresponding

to jasmonate resistant 4 were up-regulated in LN treatment. SAURs

were discovered and named because of their response to the rapid

induction of auxin. The expression of SAURs was also regulated by

many internal and external factors (Wiesel et al., 2015). In addition to

being induced by auxin, a small part of the expression of SAURs

showed auxin inhibition or non-response (Ren and Gray, 2015). Many

studies have shown that SAURs can also be induced by other plant

hormones, such as brassinolide, gibberellin and cytokinin, while

abscisic acid and jasmonic acid inhibit it (Bai et al., 2012). In

addition, light, temperature, moisture and other environmental

factors also affect the expression of SAURs (Ouyang et al., 2015). In

this study, 7 DE-lncRNAs coding to SAUR genes were down-regulated

in HN treatment compared with LN and HN treatments (LJ.1615,

LJ.12746, LJ.11860, LJ.5020, LJ.12505, LJ.23544, LJ.36187). To sum up,

DE-lncRNAs are involved in the synthesis and metabolism of

hormones in tea plants under different nitrogen conditions.

Glutathione is a reductant that regulates signal molecules and

scavenges free radicals and ROS in the redox system of plant cells.

Glutathione participates in the metabolic process of all eukaryotes to

improve plants’ tolerance to abiotic stresses such as salt, temperature,

drought, heavy metals and autotoxicity (Hodges et al., 1996; Koprivova

et al., 2010; Niu et al., 2017). Glutathione adjusts continuously in

plants, giving play to different metabolic processes and extremely

significant antioxidant advantages, which can effectively scavenge
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free radicals in organisms, which cannot be reflected by glutamine,

lycopene and other oxidants (Nakamura et al., 2019). Glutathione can

oxidize GSH by reactive oxygen species and regulate the reduction of

GSSG by glutathione reductase, thus regulating the balance between

GSH (reduced) and GSSG (oxidized) (Bashandy et al., 2010).

Exogenous GSSG could not induce root growth under normal

conditions but could promote root development under auxin

treatment (Tyburski and Tretyn, 2010). Therefore, the interaction

between auxin and GSSG can regulate plant root development. It is

reported that plants can inhibit the growth of lateral roots by

regulating the reduction ratio of GSH/GSSG in the presence of auxin

(Wei et al., 2013). Glutathione S-transferase (GSTs) converts GSH to

GSSG, while glutathione reductase (GR) induces the reduction of

GSSG to GSH, so glutathione S-transferase plays an essential role in

plant growth and development (Jiang et al., 2010). In this study, cluster

analysis of different treatments showed that a total of 82 De-lncRNAs

coding glutathione S-transferase genes were distributed in six clusters,

indicating that in nitrogen treatment, lncRNAs could regulate the

coding glutathione S-transferase genes and participated in the growth

and development of tea plants (Figure 4, Table S13).
Conclusion

Through RNA-seq and bioinformatics, this study identified

16,452 LncRNAs in the whole genome of tea plants, among which

9,451 DE-lncRNAs were differentially expressed under nitrogen

stress. The KEGG pathway further analyzed the biological and

regulation function of these lncRNAs. To sum up, this study

expands the cognition of lncRNAs in tea plants and explores a path

for further study of tea plants response to nitrogen and improvement

of nitrogen use efficiency of woody plants.
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