224 research outputs found

    Gene Transfer of Calcitonin Gene-Related Peptide Inhibits Macrophages and Inflammatory Mediators in Vein Graft Disease

    Get PDF
    Vein graft disease is a chronic inflammatory disease and limits the late results of coronary revascularization. Calcitonin gene-related peptide (CGRP) inhibits macrophages infiltrated and inflammatory mediators, we hypothesized that transfected CGRP gene inhibits macrophages infiltrated and inflammatory mediators in vein graft disease. Autologous rabbit jugular vein grafts were incubated ex vivo in a solution of mosaic adeno-associated virus vectors containing CGRP gene (AAV2/1.CGRP) 、escherichia coli lac Z gene (AAV2/1.LacZ) or saline and then interposed in the carotid artery. Intima/media ratio were evaluated at postoperative 4 weeks, Macrophages were marked with CD68 antibody by immunocytochemistry. Inflammatory mediators were mensurated with real-time PCR. Neointimal thickening was significantly suppressed in AAV2/1.CGRP group. Macrophages infiltrated and inflammatory mediators monocyte chemoattractant protein-1 (MCP-1)、tumor necrosis factorα(TNF-α)、inducible nitricoxide synthase (iNOS)、matrix metalloproteinase-9 (MMP-9) was significantly suppressed in AAV2/1.CGRP group.Gene transfected AAV2/1.CGRP suppressed neointimal hyperplasia in vein graft disease by suppressed macrophages infiltrated and inflammatory mediators

    The Eccentric Connectivity Index of Dendrimers

    Get PDF
    Abstract If G is a connected graph with vertex set V , then the eccentric connectivity index of G, ξ C (G), is defined as is the degree of a vertex v and ecc(v) is its eccentricity. We obtain exact formulas for calculating the eccentric connectivity index of dendrimers. Mathematics Subject Classification: 05C05, 05C1

    Salvia miltiorrhiza injection ameliorates myocardial ischemia-reperfusion injury via downregulation of PECAM-1

    Get PDF
    Purpose: To investigate the effect of Salvia miltiorrhiza injection on myocardial ischemia-reperfusion injury and PECAM-1 related pathways. Method: Male Wistar rats were used for establishment of myocardial ischemia-reperfusion model. The rats were randomly assigned to four groups: experimental group, low dose group (Salvia miltiorrhiza injection, 10 mL/kg/day), moderate dose group (Salvia miltiorrhiza injection, 20 mL/kg/day) and high dose group (Salvia miltiorrhiza injection, 40 mL/kg/day). Myocardial ischemia-reperfusion model was established in the four groups. Evans-TTC staining was used to assess relative area of ischemiareperfusion injury. Blood samples were collected for assay of PECAM-1 expression using enzymelinked immunosorbent assay (ELISA). Fresh blood platelets were collected in all groups, and divided into two groups - control group (normal culture) and experimental group (Salvia miltiorrhiza injection). The expression of PECAM-1 in blood platelets was assayed using Western blot. Result: Compared with the experimental group, Salvia miltiorrhiza injection ameliorated myocardial ischemia-reperfusion injury, and decreased the infarction area seen in Evans/TTC staining. PECAM-1 expression in blood was decreased by Salvia miltiorrhiza injection. Blood platelets dysfunction was induced after myocardial ischemia-reperfusion, and the level of PECAM-1 increased. However, Salvia miltiorrhiza injection treatment downregulated the expression of PECAM-1 after myocardial ischemiareperfusion. Conclusion: Salvia miltiorrhiza injection maintains normal function of blood platelets and ameliorates myocardial ischemia-reperfusion injury by decreasing expression of PECAM-1

    Physical Information Neural Networks for Solving High-index Differential-algebraic Equation Systems Based on Radau Methods

    Full text link
    As is well known, differential algebraic equations (DAEs), which are able to describe dynamic changes and underlying constraints, have been widely applied in engineering fields such as fluid dynamics, multi-body dynamics, mechanical systems and control theory. In practical physical modeling within these domains, the systems often generate high-index DAEs. Classical implicit numerical methods typically result in varying order reduction of numerical accuracy when solving high-index systems.~Recently, the physics-informed neural network (PINN) has gained attention for solving DAE systems. However, it faces challenges like the inability to directly solve high-index systems, lower predictive accuracy, and weaker generalization capabilities. In this paper, we propose a PINN computational framework, combined Radau IIA numerical method with a neural network structure via the attention mechanisms, to directly solve high-index DAEs. Furthermore, we employ a domain decomposition strategy to enhance solution accuracy. We conduct numerical experiments with two classical high-index systems as illustrative examples, investigating how different orders of the Radau IIA method affect the accuracy of neural network solutions. The experimental results demonstrate that the PINN based on a 5th-order Radau IIA method achieves the highest level of system accuracy. Specifically, the absolute errors for all differential variables remains as low as 10610^{-6}, and the absolute errors for algebraic variables is maintained at 10510^{-5}, surpassing the results found in existing literature. Therefore, our method exhibits excellent computational accuracy and strong generalization capabilities, providing a feasible approach for the high-precision solution of larger-scale DAEs with higher indices or challenging high-dimensional partial differential algebraic equation systems

    Length–weight relationship and condition factor of giant tiger shrimp, Penaeus monodon (Fabricius, 1798) from four breeding families

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.Background: Length–weight relationships and condition factors of giant tiger shrimp Penaeus monodon (Fabricius, 1798) from four breeding families (family S: South China seas family, family A: African family, family SA: ♂ South China seas family × ♀ Africa family, family AS: ♂ Africa family × ♀ South China seas family) were evaluated in this study. Findings and conclusion: Length–weight relationships can be expressed as W = 0.0239BL2.789 (R2 = 0.8977) in family S, W = 0.0206BL2.9107 (R2 = 0.9107) in family A, W = 0.0211BL2.831 (R2 = 0.8869) in family SA, and W = 0.0249BL2.781 (R2 = 0.9159) in family AS. The growth of P. monodon from four breeding families follows a negative allometric trend. Fulton’s body condition factor (K) was not significantly different in males, while in females, the highest K (3.07) was observed in family AS, and the lowest K was found in family A (1.88). Results from the present study indicate that the cross group family AS (♂ Africa family × ♀ South China seas family) has obvious heterosis in females. This may suggest that the direction of further breeding of P. monodon, should be conducted by using Africa family as male parent, and South China seas family as female parent. Results from the present study will provide valuable information on selective breeding in P. monodon. Methodology used in the present study can also be applied in other similar species

    CFD modelling of highly viscous polymer thin film flow on a vertically rotational disk partially immersed in liquid for synthesis of ployethylenterephthalat

    Get PDF
    Paper presented at the 9th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Malta, 16-18 July, 2012.The present study focuses on liquid thin film flows on vertically rotational disk that is partially immersed in a liquid bath. This paper aims to investigate the liquid thin film flow on a rotational disk using CFD modelling approach and employing the mathematical model as proposed by Afanasiev et. al. [1], and to define the stability and shapes of the thin film thickness profiles. The dominant factors that determine the film thickness are identified with proposing a correlation equation to predict the film thickness as a function of angular position, radius, rotating speed, viscosity and surface tension. The thin film thickness variation in the angular direction (θ) and the film dragged into the liquid are particularly investigated since they have been overlooked in previously documented researches.dc201

    Friction stir welding of new electronic packaging material SiCp/Al composite with T-joint

    Get PDF
    Using friction stir welding, the electronic container box and lid made from aluminium matrix composites with reinforcement of SiC particle (15 vol% SiCp/Al-MMCs) was welded successfully with T-joint. The temperature distribution of box during the process, mechanical property and microstructure of the joint as well as gas tightness of welded box was investigated. The experimental results indicated that the satisfactory T-joint can be obtained under appropriate friction stir welding parameters. During the welding process, the bottom center, which was used to place the electronic component, reached a quite lower temperature of 100°C. That can ensure safety of components in the box. After the welding process, the microstructure in stir zone was better than in base material due to the refining and homogeneous distribution of the SiC particles. The experimental results showed that the electronic container box after friction stir welding had gas tightness. The He-leakage rate was under 10-8 Pa•m3 /s

    Skeletal Ontogeny and Anomalies in Larval and Juvenile Crimson Snapper, Lutjanus erythropterus Bloch, 1790

    Get PDF
    This article is made available under the CC-BY-NC license. Copyright © 2018 Zoological Society of Pakistan.Skeletal anomalies in farmed fish affect animal welfare and economic return in aquaculture but very limited information exists on skeletal ontogeny and anomalies among species of the family Lutjanidae. This study describes the skeletal ontogeny and anomalies of crimson snapper Lutjanus erythropterus larvae and juveniles from hatching to 36 day-post hatching (DPH). Mandible, ceratobranchial, cleithrum and gill arches were the initial skeletal structures appeared at 3 DPH that supported the vital life functions such as feeding and respiration. Ossification of premaxilla and maxilla and dentary started at 3.21 ± 0.25 mm (9 DPH), and completed at 5.91 ± 0.34 mm (18 DPH). The head skeleton formation completed at 22.35 ± 2.26 mm (31 DPH). The axial skeleton development started with the formation of neural arches at 3.64 ± 0.07 mm (10 DPH) and ossification of axial skeleton completed at 11.01 ± 0.88 mm (24 DPH). The fins developed sequentially and the ossification of fins completed at 30.57 ± 2.44 mm (36 DPH). A total of 39.5% fish exhibited anomalies in the present study and the anomalies were: lordosis, vertebral fusion, neural spines bifurcation, connection of adjacent pterygiophores, haemal spine anomaly, neural spines anomaly, anomaly in pterygiophores and supernumerary neural spines. Results from this study add new knowledge to functional morphology of crimson snapper that would be useful to larval aquaculture of marine teleosts. Read more at http://researcherslinks.com/current-issues/Skeletal-Ontogeny-and-Anomalies-in-Larval/20/1/1391/html#LWtRCAugubXQpPjy.9
    corecore