72 research outputs found

    Drinking-Water Arsenic Exposure Modulates Gene Expression in Human Lymphocytes from a U.S. Population

    Get PDF
    Background: Arsenic exposure impairs development and can lead to cancer, cardiovascular disease, and diabetes. The mechanism underlying these effects remains unknown. Primarily because of geologic sources of contamination, drinking-water arsenic levels are above the current recommended maximum contaminant level of 10 μg/L in the northeastern, western, and north central regions of the United States. Objectives: We investigated the effects of arsenic exposure, defined by internal biomarkers at levels relevant to the United States and similarly exposed populations, on gene expression. Methods: We conducted separate Affymetrix microarray-based genomewide analyses of expression patterns. Peripheral blood lymphocyte samples from 21 controls interviewed (1999–2002) as part of a case–control study in New Hampshire were selected based on high- versus low-level arsenic exposure levels. Results: The biologic functions of the transcripts that showed statistically significant abundance differences between high- and low-arsenic exposure groups included an overrepresentation of genes involved in defense response, immune function, cell growth, apoptosis, regulation of cell cycle, T-cell receptor signaling pathway, and diabetes. Notably, the high-arsenic exposure group exhibited higher levels of several killer cell immunoglobulin-like receptors that inhibit natural killer cell activity. Conclusions: These findings define biologic changes that occur with chronic arsenic exposure in humans and provide leads and potential targets for understanding and monitoring the pathogenesis of arsenic-induced diseases

    Drinking-Water Arsenic Exposure Modulates Gene Expression in Human Lymphocytes from a U.S. Population

    Get PDF
    Background: Arsenic exposure impairs development and can lead to cancer, cardiovascular disease, and diabetes. The mechanism underlying these effects remains unknown. Primarily because of geologic sources of contamination, drinking-water arsenic levels are above the current recommended maximum contaminant level of 10 μg/L in the northeastern, western, and north central regions of the United States. Objectives: We investigated the effects of arsenic exposure, defined by internal biomarkers at levels relevant to the United States and similarly exposed populations, on gene expression. Methods: We conducted separate Affymetrix microarray-based genomewide analyses of expression patterns. Peripheral blood lymphocyte samples from 21 controls interviewed (1999–2002) as part of a case–control study in New Hampshire were selected based on high- versus low-level arsenic exposure levels. Results: The biologic functions of the transcripts that showed statistically significant abundance differences between high- and low-arsenic exposure groups included an overrepresentation of genes involved in defense response, immune function, cell growth, apoptosis, regulation of cell cycle, T-cell receptor signaling pathway, and diabetes. Notably, the high-arsenic exposure group exhibited higher levels of several killer cell immunoglobulin-like receptors that inhibit natural killer cell activity. Conclusions: These findings define biologic changes that occur with chronic arsenic exposure in humans and provide leads and potential targets for understanding and monitoring the pathogenesis of arsenic-induced diseases

    Direct Probe of Dark Energy Interactions with a Solar System Laboratory

    Get PDF
    In this NIAC (NASA Innovative Advanced Concepts) study, we embrace the challenge of direct detection of the galileon dark energy field in the Vainshtein model. We developed a mission concept to directly measure the galileon field using the solar system as a laboratory. The experiment scheme involves precise measurements of the trace of the total scalar force gradient tensor. A tetrahedral constellation off our spacecraft measures the "local" traces while orbiting about 1 AU (Astronomical Unit) away from the Sun and faraway from planets (Figure 1). The trace measurement is insensitive to the much stronger gravity field which satisfies the inverse square law and thus is traceless. Atomic test masses and atom interferometer measurement techniques are used as precise drag-free inertial references while laser ranging interferometers are employed to connect among atom interferometer pairs in spacecraft for the differential gradient force measurements. We conclude that such a mission is scientifically and technologically feasible. We show that a mission of 3-year measurement time would be able to provide high confidence statements (over 3 standard deviations) about the existence and strength of the cubic galileon field of the Sun. In addition, such a mission would also provide rich and diverse scientific data for testing any gravitational theory in general beyond the Newtonian gravity, hunting for ultra-light fields of dark matter, and detecting gravitational waves in the mid-frequency band between those of LIGO (Laser Interferometer Gravitational-Wave Observatory) and LISA (Laser Interferometer Space Antenna). For these reasons, we will term the mission concept Gravity Observation and Dark energy Detection Explorer in the Solar System (GODDESS)

    Association of Exposure to Wildfire Air Pollution With Exacerbations of Atopic Dermatitis and Itch Among Older Adults.

    Get PDF
    This cross-sectional study evaluates the association of exposure to wildfire air pollution with exacerbations of atopic dermatitis and itch among adults aged 65 years or older

    Association of Wildfire Air Pollution With Clinic Visits for Psoriasis

    Get PDF
    This cross-sectional study examines whether clinic visits and online search interest for psoriasis were associated with wildfire air pollution after a delayed lag period

    Drinking-Water Arsenic Exposure Modulates Gene Expression in Human Lymphocytes from a U.S. Population

    Get PDF
    BACKGROUND: Arsenic exposure impairs development and can lead to cancer, cardiovascular disease, and diabetes. The mechanism underlying these effects remains unknown. Primarily because of geologic sources of contamination, drinking-water arsenic levels are above the current recommended maximum contaminant level of 10 µg/L in the northeastern, western, and north central regions of the United States. OBJECTIVES: We investigated the effects of arsenic exposure, defined by internal biomarkers at levels relevant to the United States and similarly exposed populations, on gene expression. METHODS: We conducted separate Affymetrix microarray-based genomewide analyses of expression patterns. Peripheral blood lymphocyte samples from 21 controls interviewed (1999–2002) as part of a case–control study in New Hampshire were selected based on high- versus low-level arsenic exposure levels. RESULTS: The biologic functions of the transcripts that showed statistically significant abundance differences between high- and low-arsenic exposure groups included an overrepresentation of genes involved in defense response, immune function, cell growth, apoptosis, regulation of cell cycle, T-cell receptor signaling pathway, and diabetes. Notably, the high-arsenic exposure group exhibited higher levels of several killer cell immunoglobulin-like receptors that inhibit natural killer cell activity. CONCLUSIONS: These findings define biologic changes that occur with chronic arsenic exposure in humans and provide leads and potential targets for understanding and monitoring the pathogenesis of arsenic-induced diseases. KEY WORDS: arsenic, drinking water, immune response, lymphocytes, microarray, U.S. population. Environ Health Perspect 116:524–531 (2008). doi:10.1289/ehp.10861 available vi

    BASC: an integrated bioinformatics system for Brassica research

    Get PDF
    The BASC system provides tools for the integrated mining and browsing of genetic, genomic and phenotypic data. This public resource hosts information on Brassica species supporting the Multinational Brassica Genome Sequencing Project, and is based upon five distinct modules, ESTDB, Microarray, MarkerQTL, CMap and EnsEMBL. ESTDB hosts expressed gene sequences and related annotation derived from comparison with GenBank, UniRef and the genome sequence of Arabidopsis. The Microarray module hosts gene expression information related to genes annotated within ESTDB. MarkerQTL is the most complex module and integrates information on genetic markers, maps, individuals, genotypes and traits. Two further modules include an Arabidopsis EnsEMBL genome viewer and the CMap comparative genetic map viewer for the visualization and integration of genetic and genomic data. The database is accessible at

    Association of Wildfire Air Pollution and Health Care Use for Atopic Dermatitis and Itch.

    Get PDF
    IMPORTANCE: Air pollution is a worldwide public health issue that has been exacerbated by recent wildfires, but the relationship between wildfire-associated air pollution and inflammatory skin diseases is unknown. OBJECTIVE: To assess the associations between wildfire-associated air pollution and clinic visits for atopic dermatitis (AD) or itch and prescribed medications for AD management. DESIGN, SETTING, AND PARTICIPANTS: This cross-sectional time-series study assessed the associations of air pollution resulting from the California Camp Fire in November 2018 and 8049 dermatology clinic visits (4147 patients) at an academic tertiary care hospital system in San Francisco, 175 miles from the wildfire source. Participants included pediatric and adult patients with AD or itch from before, during, and after the time of the fire (October 2018 through February 2019), compared with those with visits in the same time frame of 2015 and 2016, when no large wildfires were near San Francisco. Data analysis was conducted from November 1, 2019, to May 30, 2020. EXPOSURES: Wildfire-associated air pollution was characterized using 3 metrics: fire status, concentration of particulate matter less than 2.5 μm in diameter (PM2.5), and satellite-based smoke plume density scores. MAIN OUTCOMES AND MEASURES: Weekly clinic visit counts for AD or itch were the primary outcomes. Secondary outcomes were weekly numbers of topical and systemic medications prescribed for AD in adults. RESULTS: Visits corresponding to a total of 4147 patients (mean [SD] age, 44.6 [21.1] years; 2322 [56%] female) were analyzed. The rates of visits for AD during the Camp Fire for pediatric patients were 1.49 (95% CI, 1.07-2.07) and for adult patients were 1.15 (95% CI, 1.02-1.30) times the rate for nonfire weeks at lag 0, adjusted for temperature, relative humidity, patient age, and total patient volume at the clinics for pediatric patients. The adjusted rate ratios for itch clinic visits during the wildfire weeks were 1.82 (95% CI, 1.20-2.78) for the pediatric patients and 1.29 (95% CI, 0.96-1.75) for adult patients. A 10-μg/m3 increase in weekly mean PM2.5 concentration was associated with a 7.7% (95% CI, 1.9%-13.7%) increase in weekly pediatric itch clinic visits. The adjusted rate ratio for prescribed systemic medications in adults during the Camp Fire at lag 0 was 1.45 (95% CI, 1.03-2.05). CONCLUSIONS AND RELEVANCE: This cross-sectional study found that short-term exposure to air pollution due to the wildfire was associated with increased health care use for patients with AD and itch. These results may provide a better understanding of the association between poor air quality and skin health and guide health care professionals' counseling of patients with skin disease and public health practice

    Removal of PCR Error Products and Unincorporated Primers by Metal-Chelate Affinity Chromatography

    Get PDF
    Immobilized Metal Affinity Chromatography (IMAC) has been used for decades to purify proteins on the basis of amino acid content, especially surface-exposed histidines and “histidine tags” genetically added to recombinant proteins. We and others have extended the use of IMAC to purification of nucleic acids via interactions with the nucleotide bases, especially purines, of single-stranded RNA and DNA. We also have demonstrated the purification of plasmid DNA from contaminating genomic DNA by IMAC capture of selectively-denatured genomic DNA. Here we describe an efficient method of purifying PCR products by specifically removing error products, excess primers, and unincorporated dNTPs from PCR product mixtures using flow-through metal-chelate affinity adsorption. By flowing a PCR product mixture through a Cu2+-iminodiacetic acid (IDA) agarose spin column, 94–99% of the dNTPs and nearly all the primers can be removed. Many of the error products commonly formed by Taq polymerase also are removed. Sequencing of the IMAC-processed PCR product gave base-calling accuracy comparable to that obtained with a commercial PCR product purification method. The results show that IMAC matrices (specifically Cu2+-IDA agarose) can be used for the purification of PCR products. Due to the generality of the base-specific mechanism of adsorption, IMAC matrices may also be used in the purification of oligonucleotides, cDNA, mRNA and micro RNAs
    corecore