230 research outputs found

    Monte-Carlo methods for NLTE spectral synthesis of supernovae

    Full text link
    We present JEKYLL, a new code for modelling of supernova (SN) spectra and lightcurves based on Monte-Carlo (MC) techniques for the radiative transfer. The code assumes spherical symmetry, homologous expansion and steady state for the matter, but is otherwise capable of solving the time-dependent radiative transfer problem in non-local-thermodynamic-equilibrium (NLTE). The method used was introduced in a series of papers by Lucy, but the full time-dependent NLTE capabilities of it have never been tested. Here, we have extended the method to include non-thermal excitation and ionization as well as charge-transfer and two-photon processes. Based on earlier work, the non-thermal rates are calculated by solving the Spencer-Fano equation. Using a method previously developed for the SUMO code, macroscopic mixing of the material is taken into account in a statistical sense. In addition, a statistical Markov-chain model is used to sample the emission frequency, and we introduce a method to control the sampling of the radiation field. Except for a description of JEKYLL, we provide comparisons with the ARTIS, SUMO and CMFGEN codes, which show good agreement in the calculated spectra as well as the state of the gas. In particular, the comparison with CMFGEN, which is similar in terms of physics but uses a different technique, shows that the Lucy method does indeed converge in the time-dependent NLTE case. Finally, as an example of the time-dependent NLTE capabilities of JEKYLL, we present a model of a Type IIb SN, taken from a set of models presented and discussed in detail in an accompanying paper. Based on this model we investigate the effects of NLTE, in particular those arising from non-thermal excitation and ionization, and find strong effects even on the bolometric lightcurve. This highlights the need for full NLTE calculations when simulating the spectra and lightcurves of SNe.Comment: Accepted for publication by Astronomy & Astrophysic

    Emission line models for the lowest-mass core collapse supernovae. I: Case study of a 9 M⊙M_\odot one-dimensional neutrino-driven explosion

    Full text link
    A large fraction of core-collapse supernovae (CCSNe), 30-50%, are expected to originate from the low-mass end of progenitors with MZAMS =8−12 M⊙M_{\rm ZAMS}~= 8-12~M_\odot. However, degeneracy effects make stellar evolution modelling of such stars challenging, and few predictions for their supernova light curves and spectra have been presented. Here we calculate synthetic nebular spectra of a 9 M⊙M_\odot Fe CCSN model exploded with the neutrino mechanism. The model predicts emission lines with FWHM∼\sim1000 km/s, including signatures from each deep layer in the metal core. We compare this model to observations of the three subluminous IIP SNe with published nebular spectra; SN 1997D, SN 2005cs, and SN 2008bk. The prediction of both line profiles and luminosities are in good agreement with SN 1997D and SN 2008bk. The close fit of a model with no tuning parameters provides strong evidence for an association of these objects with low-mass Fe CCSNe. For SN 2005cs, the interpretation is less clear, as the observational coverage ended before key diagnostic lines from the core had emerged. We perform a parameterised study of the amount of explosively made stable nickel, and find that none of these three SNe show the high 58^{58}Ni/56^{56}Ni ratio predicted by current models of electron capture SNe (ECSNe) and ECSN-like explosions. Combined with clear detection of lines from O and He shell material, these SNe rather originate from Fe core progenitors. We argue that the outcome of self-consistent explosion simulations of low-mass stars, which gives fits to many key observables, strongly suggests that the class of subluminous Type IIP SNe is the observational counterpart of the lowest mass CCSNe.Comment: Resubmitted to MNRAS after referee comment

    The nebular spectra of SN 2012aw and constraints on stellar nucleosynthesis from oxygen emission lines

    Get PDF
    We present nebular phase optical and near-infrared spectroscopy of the Type IIP supernova SN 2012aw combined with NLTE radiative transfer calculations applied to ejecta from stellar evolution/explosion models. Our spectral synthesis models generally show good agreement with the ejecta from a MZAMS = 15 Msun progenitor star. The emission lines of oxygen, sodium, and magnesium are all consistent with the nucleosynthesis in a progenitor in the 14 - 18 Msun range. We also demonstrate how the evolution of the oxygen cooling lines of [O I] 5577 A, [O I] 6300 A, and [O I] 6364 A can be used to constrain the mass of oxygen in the non-molecularly cooled ashes to < 1 Msun, independent of the mixing in the ejecta. This constraint implies that any progenitor model of initial mass greater than 20 Msun would be difficult to reconcile with the observed line strengths. A stellar progenitor of around MZAMS = 15 Msun can consistently explain the directly measured luminosity of the progenitor star, the observed nebular spectra, and the inferred pre-supernova mass-loss rate. We conclude that there is still no convincing example of a Type IIP explosion showing the nucleosynthesis expected from a MZAMS > 20 Msun progenitor.Comment: Accepted for publication in MNRA

    Constraints on explosive silicon burning in core-collapse supernovae from measured Ni/Fe ratios

    Get PDF
    Measurements of explosive nucleosynthesis yields in core-collapse supernovae provide tests for explosion models. We investigate constraints on explosive conditions derivable from measured amounts of nickel and iron after radioactive decays using nucleosynthesis networks with parameterized thermodynamic trajectories. The Ni/Fe ratio is for most regimes dominated by the production ratio of 58Ni/(54Fe + 56Ni), which tends to grow with higher neutron excess and with higher entropy. For SN 2012ec, a supernova that produced a Ni/Fe ratio of 3.4±1.23.4\pm1.2 times solar, we find that burning of a fuel with neutron excess η≈6×10−3\eta \approx 6\times 10^{-3} is required. Unless the progenitor metallicity is over 5 times solar, the only layer in the progenitor with such a neutron excess is the silicon shell. Supernovae producing large amounts of stable nickel thus suggest that this deep-lying layer can be, at least partially, ejected in the explosion. We find that common spherically symmetric models of MZAMS≲13M_{\rm ZAMS} \lesssim 13 Msun stars exploding with a delay time of less than one second (Mcut<1.5M_{\rm cut} < 1.5 Msun) are able to achieve such silicon-shell ejection. Supernovae that produce solar or sub-solar Ni/Fe ratios, such as SN 1987A, must instead have burnt and ejected only oxygen-shell material, which allows a lower limit to the mass cut to be set. Finally, we find that the extreme Ni/Fe value of 60-75 times solar derived for the Crab cannot be reproduced by any realistic-entropy burning outside the iron core, and neutrino-neutronization obtained in electron-capture models remains the only viable explanation.Comment: 13 pages, 9 figures, accepted for publication in Ap

    Late-time spectral line formation in Type IIb supernovae, with application to SN 1993J, SN 2008ax, and SN 2011dh

    Get PDF
    We investigate line formation processes in Type IIb supernovae (SNe) from 100 to 500 days post-explosion using spectral synthesis calculations. The modeling identifies the nuclear burning layers and physical mechanisms that produce the major emission lines, and the diagnostic potential of these. We compare the model calculations with data on the three best observed Type IIb SNe to-date - SN 1993J, SN 2008ax, and SN 2011dh. Oxygen nucleosynthesis depends sensitively on the main-sequence mass of the star and modeling of the [O I] 6300, 6364 lines constrains the progenitors of these three SNe to the M_ZAMS=12-16 M_sun range (ejected oxygen masses 0.3-0.9 M_sun), with SN 2011dh towards the lower end and SN 1993J towards the upper end of the range. The high ejecta masses from M_ZAMS >= 17 M_sun progenitors give rise to brighter nebular phase emission lines than observed. Nucleosynthesis analysis thus supports a scenario of low/moderate mass progenitors for Type IIb SNe, and by implication an origin in binary systems. We demonstrate how oxygen and magnesium recombination lines may be combined to diagnose the magnesium mass in the SN ejecta. For SN 2011dh, a magnesium mass of of 0.02-0.14 M_sun is derived, which gives a Mg/O production ratio consistent with the solar value. Nitrogen left in the He envelope from CNO-burning gives strong [N II] 6548, 6583 emission lines that dominate over H-alpha emission in our models. The hydrogen envelopes of Type IIb SNe are too small and dilute to produce any noticeable H-alpha emission or absorption after ~150 days, and nebular phase emission seen around 6550 A is in many cases likely caused by [N II] 6548, 6583. Finally, the influence of radiative transport on the emergent line profiles is investigated...(abridged)Comment: Published versio

    Spectra of supernovae in the nebular phase

    Full text link
    When supernovae enter the nebular phase after a few months, they reveal spectral fingerprints of their deep interiors, glowing by radioactivity produced in the explosion. We are given a unique opportunity to see what an exploded star looks like inside. The line profiles and luminosities encode information about physical conditions, explosive and hydrostatic nucleosynthesis, and ejecta morphology, which link to the progenitor properties and the explosion mechanism. Here, the fundamental properties of spectral formation of supernovae in the nebular phase are reviewed. The formalism between ejecta morphology and line profile shapes is derived, including effects of scattering and absorption. Line luminosity expressions are derived in various physical limits, with examples of applications from the literature. The physical processes at work in the supernova ejecta, including gamma-ray deposition, non-thermal electron degradation, ionization and excitation, and radiative transfer are described and linked to the computation and application of advanced spectral models. Some of the results derived so far from nebular-phase supernova analysis are discussed.Comment: Book chapter for 'Handbook of Supernovae,' edited by Alsabti and Murdin, Springer. 51 pages, 14 figure

    Using late-time optical and near-infrared spectra to constrain Type Ia supernova explosion properties

    Get PDF
    The late-time spectra of Type Ia supernovae (SNe Ia) are powerful probes of the underlying physics of their explosions. We investigate the late-time optical and near-infrared spectra of seven SNe Ia obtained at the VLT with XShooter at >>200 d after explosion. At these epochs, the inner Fe-rich ejecta can be studied. We use a line-fitting analysis to determine the relative line fluxes, velocity shifts, and line widths of prominent features contributing to the spectra ([Fe II], [Ni II], and [Co III]). By focussing on [Fe II] and [Ni II] emission lines in the ~7000-7500 \AA\ region of the spectrum, we find that the ratio of stable [Ni II] to mainly radioactively-produced [Fe II] for most SNe Ia in the sample is consistent with Chandrasekhar-mass delayed-detonation explosion models, as well as sub-Chandrasekhar mass explosions that have metallicity values above solar. The mean measured Ni/Fe abundance of our sample is consistent with the solar value. The more highly ionised [Co III] emission lines are found to be more centrally located in the ejecta and have broader lines than the [Fe II] and [Ni II] features. Our analysis also strengthens previous results that SNe Ia with higher Si II velocities at maximum light preferentially display blueshifted [Fe II] 7155 \AA\ lines at late times. Our combined results lead us to speculate that the majority of normal SN Ia explosions produce ejecta distributions that deviate significantly from spherical symmetry.Comment: 17 pages, 12 figure, accepted for publication in MNRA

    The host galaxy and late-time evolution of the Super-Luminous Supernova PTF12dam

    Get PDF
    Super-luminous supernovae of type Ic have a tendency to occur in faint host galaxies which are likely to have low mass and low metallicity. PTF12dam is one of the closest and best studied super-luminous explosions that has a broad and slowly fading lightcurve similar to SN 2007bi. Here we present new photometry and spectroscopy for PTF12dam from 200-500 days (rest-frame) after peak and a detailed analysis of the host galaxy (SDSS J142446.21+461348.6 at z = 0.107). Using deep templates and image subtraction we show that the full lightcurve can be fit with a magnetar model if escape of high-energy gamma rays is taken into account. The full bolometric lightcurve from -53 to +399 days (with respect to peak) cannot be fit satisfactorily with the pair-instability models. An alternative model of interaction with a dense CSM produces a good fit to the data although this requires a very large mass (~ 13 M_sun) of hydrogen free CSM. The host galaxy is a compact dwarf (physical size ~ 1.9 kpc) and with M_g = -19.33 +/- 0.10, it is the brightest nearby SLSN Ic host discovered so far. The host is a low mass system (2.8 x 10^8 M_sun) with a star-formation rate (5.0 M_sun/year), which implies a very high specific star-formation rate (17.9 Gyr^-1). The remarkably strong nebular lines provide detections of the [O III] \lambda 4363 and [O II] \lambda\lambda 7320,7330 auroral lines and an accurate oxygen abundance of 12 + log(O/H) = 8.05 +/- 0.09. We show here that they are at the extreme end of the metallicity distribution of dwarf galaxies and propose that low metallicity is a requirement to produce these rare and peculiar supernovae.Comment: 20 pages, 12 figures, 8 tables, accepted for publication to MNRA

    The multi-faceted Type II-L supernova 2014G from pre-maximum to nebular phase

    Get PDF
    We present multi-band ultraviolet, optical, and near-infrared photometry, along with visual-wavelength spectroscopy, of supernova (SN) 2014G in the nearby galaxy NGC 3448 (25 Mpc). The early-phase spectra show strong emission lines of the high ionisation species He II/N IV/C IV during the first 2-3 d after explosion, traces of a metal-rich CSM probably due to pre-explosion mass loss events. These disappear by day 9 and the spectral evolution then continues matching that of normal Type II SNe. The post-maximum light curve declines at a rate typical of Type II-L class. The extensive photometric coverage tracks the drop from the photospheric stage and constrains the radioactive tail, with a steeper decline rate than that expected from the 56^{56}Co decay if γ\gamma-rays are fully trapped by the ejecta. We report the appearance of an unusual feature on the blue-side of Hα\alpha after 100 d, which evolves to appear as a flat spectral feature linking Hα\alpha and the O I doublet. This may be due to interaction of the ejecta with a strongly asymmetric, and possibly bipolar CSM. Finally, we report two deep spectra at ~190 and 340 d after explosion, the latter being arguably one of the latest spectra for a Type II-L SN. By modelling the spectral region around the Ca II, we find a supersolar Ni/Fe production. The strength of the O I λλ\lambda\lambda6300,6363 doublet, compared with synthetic nebular spectra, suggests a progenitor with a zero-age main-sequence mass between 15 and 19 M⊙_\odot.Comment: 24 pages, 14 figure
    • …
    corecore