10 research outputs found

    Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial

    Get PDF
    SummaryBackground Azithromycin has been proposed as a treatment for COVID-19 on the basis of its immunomodulatoryactions. We aimed to evaluate the safety and efficacy of azithromycin in patients admitted to hospital with COVID-19.Methods In this randomised, controlled, open-label, adaptive platform trial (Randomised Evaluation of COVID-19Therapy [RECOVERY]), several possible treatments were compared with usual care in patients admitted to hospitalwith COVID-19 in the UK. The trial is underway at 176 hospitals in the UK. Eligible and consenting patients wererandomly allocated to either usual standard of care alone or usual standard of care plus azithromycin 500 mg once perday by mouth or intravenously for 10 days or until discharge (or allocation to one of the other RECOVERY treatmentgroups). Patients were assigned via web-based simple (unstratified) randomisation with allocation concealment andwere twice as likely to be randomly assigned to usual care than to any of the active treatment groups. Participants andlocal study staff were not masked to the allocated treatment, but all others involved in the trial were masked to theoutcome data during the trial. The primary outcome was 28-day all-cause mortality, assessed in the intention-to-treatpopulation. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936.Findings Between April 7 and Nov 27, 2020, of 16 442 patients enrolled in the RECOVERY trial, 9433 (57%) wereeligible and 7763 were included in the assessment of azithromycin. The mean age of these study participants was65·3 years (SD 15·7) and approximately a third were women (2944 [38%] of 7763). 2582 patients were randomlyallocated to receive azithromycin and 5181 patients were randomly allocated to usual care alone. Overall,561 (22%) patients allocated to azithromycin and 1162 (22%) patients allocated to usual care died within 28 days(rate ratio 0·97, 95% CI 0·87–1·07; p=0·50). No significant difference was seen in duration of hospital stay (median10 days [IQR 5 to >28] vs 11 days [5 to >28]) or the proportion of patients discharged from hospital alive within 28 days(rate ratio 1·04, 95% CI 0·98–1·10; p=0·19). Among those not on invasive mechanical ventilation at baseline, nosignificant difference was seen in the proportion meeting the composite endpoint of invasive mechanical ventilationor death (risk ratio 0·95, 95% CI 0·87–1·03; p=0·24).Interpretation In patients admitted to hospital with COVID-19, azithromycin did not improve survival or otherprespecified clinical outcomes. Azithromycin use in patients admitted to hospital with COVID-19 should be restrictedto patients in whom there is a clear antimicrobial indication

    Cornstarch is less allergenic than corn flour in dogs and cats previously sensitized to corn

    No full text
    Abstract Background Corn appears to be an uncommon food source of allergens in dogs and cats. There is limited information on the nature of the corn allergens in dogs and cats and their presence in the various foodstuffs used in commercial pet foods. The aim of this study was to determine if serum IgE from corn-sensitized dogs and cats recognized proteins in corn flour and cornstarch, which are common sources of carbohydrates in pet foods. Results We selected archived sera from allergy-suspected dogs (40) and cats (40) with either undetectable, low, medium or high serum levels of corn-specific IgE. These sera were tested then by ELISA on plates coated with extracts made from corn kernels, corn flour, cornstarch and the starch used in the commercially-available extensively-hydrolyzed pet food Anallergenic (Royal Canin). Immunoblotting was then performed on the same extracts with some of the sera from moderate-to-high corn-sensitized dogs and cats. Using ELISA, it is mostly the dogs and cats with moderate and high corn-specific IgE levels that also had IgE identifying allergens in the flour (dogs: 20/30 sera, 67% - cats: 20/29, 69%). In contrast, none of the tested sera had measurable IgE against proteins isolated from the cornstarch. Immunoblotting confirmed the existence of numerous major corn allergens in the corn kernel extract, fewer in that of the corn flour, while such allergens were not detectable using this technique in the two cornstarch extracts. Conclusions In this study, ELISA and immunoblotting results suggest that IgE from corn-sensitized dogs are less likely to recognize allergens in cornstarch than in kernel and flour extracts. As corn is not a common allergen source in dogs and cats, and as its starch seems to be less allergenic than its flour, pet foods containing cornstarch as a carbohydrate source are preferable for dogs and cats suspected of suffering from corn allergy

    Extensive protein hydrolyzation is indispensable to prevent IgE-mediated poultry allergen recognition in dogs and cats

    No full text
    Abstract Background The central premise for the commercialization of diets with hydrolyzed ingredients is that the small-sized digested peptides would be unable to crosslink allergen-specific IgE at the surface of tissue mast cells and induce their degranulation. Evidence for the validity of this concept to diagnose food allergies in dogs and cats is limited, however. Our objectives were to study the recognition of standard and variably hydrolyzed poultry extracts by sera from dogs and cats with elevated chicken-specific serum IgE. Results Forty sera from dogs and 40 from cats with undetectable, low, medium or high serum levels of chicken-specific IgE were tested by ELISA on plates coated with the positive controls chicken, duck and turkey meat extracts and the negative controls beef meat (dogs) or wheat (cats). Plates were also coated with a non-hydrolyzed chicken meal, and mildly- or extensively-hydrolyzed poultry feather extracts. The frequencies of dogs with positive IgE against the various extracts were: chicken meat: 100%, duck and turkey meats: 97%, beef meat: 3%, non-hydrolyzed chicken meal: 73%, mildly-hydrolyzed poultry feathers: 37% and extensively-hydrolyzed poultry feathers: 0%. For cats, these respective percentages were (with wheat replacing beef as a negative control): 100, 84, 97, 7, 7, 0 and 0%. To detect any allergenic cross-reactivity between poultry meat-based and feather hydrolysate-derived extracts, an IgE ELISA inhibition was also done. Ten canine sera with the highest level of anti-poultry IgE in the previous experiment were incubated overnight with a previously optimized 50 μg amount of each of the extracts used above. We performed ELISA on plates coated with chicken, duck or turkey meats with or without inhibitors. The median inhibition percentages after incubation with the non-hydrolyzed chicken meal were ~22%, with the mildly-hydrolyzed poultry feathers: 14–22%, and those with the extensively-hydrolyzed poultry feathers: 5 to 10%; the last inhibition level was similar to that of the beef meat negative control. Conclusions Altogether, these results suggest that an extensive—but not partial—hydrolyzation of the poultry feather extract is necessary to prevent the recognition of allergenic epitopes by poultry-specific IgE

    Additional file 1 of Cornstarch is less allergenic than corn flour in dogs and cats previously sensitized to corn

    No full text
    : SDS-PAGE. Extracts (~ 5 μg/lane) were separated in 4–12% gels by SDS-PAGE. Lane 1: molecular weight (M wt) markers; lane 2: standard corn extract (SCE); lane 3: regular corn flour (RCF) extract; lane 4: Regular cornstarch (RCS) extract; lane 5: Anallergenic cornstarch (ACS) extract. (TIFF 218 kb

    Identification of major and minor chicken allergens in dogs

    No full text
    BACKGROUND: Allergens targeted by serum-specific immunoglobulin E (sIgE) in dogs clinically allergic to chicken have not been reported. OBJECTIVES: To characterise the allergens targeted by sIgE in dogs sensitised and allergic to chicken. ANIMALS: Sera from three dogs not sensitised to chicken, from 10 chicken sensitised dogs and from 12 chicken allergic dogs. METHODS AND MATERIALS: Enzyme-linked immunosorbent assay (ELISA) and immunoblotting with a commercial chicken extract were utilized. The bands identified on immunoblotting were sequenced by mass spectrometry for allergen characterization. RESULTS: Using ELISA, we detected chicken-sIgE above the positive threshold in zero of three (0%) nonsensitised dogs, five of five (100%) chicken-sensitised dogs (a selection criterion), and in seven of 12 (58%) chicken-allergic dogs. Immunoblotting performed with the same extract revealed IgE-bound protein bands in 100% of all chicken-sensitised and -allergic dogs, respectively. To identify the allergens, we excised the corresponding bands on the electrophoretic gel, and submitted them for sequencing by mass spectrometry. We conclusively identified seven major allergens (serum albumin, pyruvate kinase M, enolase 3, creatine kinase M, lactate dehydrogenase A, glyceraldehyde-3-phosphate dehydrogenase and triose-phosphate isomerase) and one minor allergen (troponin C), which are relevant to dogs. CONCLUSIONS AND CLINICAL RELEVANCE: We identified herein seven major chicken allergens for dogs, several of which are known to be cross-reactive allergens for humans. Based on their degree of sequence identity, these allergens exhibit the theoretical potential to be cross-reactive between poultry and mammalian meats; six of these allergens already are known to be cross-reactive between chicken and fish species. Future studies should address the clinical relevance and cross-reactivity potential of these chicken allergens in dogs

    Spatially resolved phosphoproteomics reveals fibroblast growth factor receptor recycling-driven regulation of autophagy and survival

    No full text
    Receptor Tyrosine Kinase (RTK) endocytosis-dependent signalling drives cell proliferation and motility during development and adult homeostasis, but is dysregulated in diseases, including cancer. The recruitment of RTK signalling partners during endocytosis, specifically during recycling to the plasma membrane, is still unknown. Focusing on Fibroblast Growth Factor Receptor 2b (FGFR2b) recycling, we reveal FGFR signalling partners proximal to recycling endosomes by developing a Spatially Resolved Phosphoproteomics (SRP) approach based on APEX2-driven biotinylation followed by phosphorylated peptides enrichment. Combining this with traditional phosphoproteomics, bioinformatics, and targeted assays, we uncover that FGFR2b stimulated by its recycling ligand FGF10 activates mTOR-dependent signalling and ULK1 at the recycling endosomes, leading to autophagy suppression and cell survival. This adds to the growing importance of RTK recycling in orchestrating cell fate and suggests a therapeutically targetable vulnerability in ligand-responsive cancer cells. Integrating SRP with other systems biology approaches provides a powerful tool to spatially resolve cellular signalling
    corecore