1,210 research outputs found

    Plasma metabolites reflect seasonally changing metabolic processes in a long-distance migrant shorebird (Calidris canutus)

    Get PDF
    Migrant birds have tightly scheduled annual cycles consisting of several distinct life cycle (sub-)stages such as reproduction, migration, moult and overwintering, each of which have specific metabolic requirements (e.g., fattening during migration, protein build-up during moult). This study examines changes in fat and protein metabolism during the annual cycle of body mass and moult over 1.5 years in a captive flock of an arctic-breeding shorebird, the red knot Calidris canutus islandica. 2–5 h after food withdrawal, plasma uric acid levels were still decreasing and β-hydroxy-butyrate levels were low, indicating prolonged catabolism of dietary protein, probably linked with a conversion into lipids. Such a late-resorptive state is achieved much earlier in passerines, but only after several days in penguins and, thus, seems to depend on meal size or mass-specific metabolic rate. Substages of body mass gain and high body mass were characterized by increased plasma triglyceride levels reflecting increased turnover of lipids, and low levels of the ketone body β-hydroxy-butyrate, indicating that the bird is not short of glucose. The high uric acid levels during these substages indicated an increased breakdown of nutritional protein. During moult, plasma triglyceride levels were low, suggesting that lipids were less available than at other times of the year. It is concluded that plasma metabolite levels indicate the metabolic processes related to migratory fuelling and moult and the influence of exogeneous factors.

    Oxidative stress in endurance flight: an unconsidered factor in bird migration

    Get PDF
    Migrating birds perform extraordinary endurance flights, up to 200 h non-stop, at a very high metabolic rate and while fasting. Such an intense and prolonged physical activity is normally associated with an increased production of reactive oxygen and nitrogen species (RONS) and thus increased risk of oxidative stress. However, up to now it was unknown whether endurance flight evokes oxidative stress. We measured a marker of oxidative damage (protein carbonyls, PCs) and a marker of enzymatic antioxidant capacity (glutathione peroxidase, GPx) in the European robin (Erithacus rubecula), a nocturnal migrant, on its way to the non-breeding grounds. Both markers were significantly higher in European robins caught out of their nocturnal flight than in conspecifics caught during the day while resting. Independently of time of day, both markers showed higher concentrations in individuals with reduced flight muscles. Adults had higher GPx concentrations than first-year birds on their first migration. These results show for the first time that free-flying migrants experience oxidative stress during endurance flight and up-regulate one component of antioxidant capacity. We discuss that avoiding oxidative stress may be an overlooked factor shaping bird migration strategies, e.g. by disfavouring long non-stop flights and an extensive catabolism of the flight muscles

    Body mass of six long-distance migrant passerine species along the autumn migration route

    Get PDF
    Summary: We analysed body mass and moult data of six passerine species along their autumn migration route from northern Europe to North Africa and derived hypothetical models of the organisation of their migration in terms of fuel store accumulation. We analysed data of 46,541 first-year birds from 34 trapping sites, sampled in a network of collaborating European and African ringing stations. After accounting for effects of time of day and size, there were marked differences between the six species examined in the change of body mass along the migration route and in the timing of moult. Garden Warblers (Sylvia borin) and Pied Flycatchers (Ficedula hypoleuca) underwent their postjuvenile moult prior to migration and increased their average body mass along the migration route. Sedge Warblers (Acrocephalus schoenobaenus) also increased body mass towards the south, but started the migration bout without further refuelling well before the Sahara and moulted mainly in the wintering grounds. Reed Warblers (Acrocephalus scirpaceus) and Whitethroats (Sylvia communis) migrated while still moulting and did not increase average body mass towards south. They accumulated the energy needed to fly over the Sahara just before it. Spotted Flycatchers (Muscicapa striata) behaved in the same way, but contrary to Reed Warblers and Whitethroats they did not accumulate much fat stores in North Africa, which might urge them to stop and fuel up regularly in the Sahara. In the course of the season average body mass of all species increased slightly, which enabled them to migrate faster. In general, average body mass of first-year birds in northern and central Europe during the migration period was comparable to that of adults during breedin

    Fuel stores, fuel accumulation, and the decision to depart from a migration stopover site

    Get PDF
    Birds usually migrate by alternating flight bouts and stopovers for refueling. The decision when to leave a stopover place is of paramount importance for the success of migration. Despite its importance, little is known about which factors influence the departure decision. Using capture-recapture data of passerines from 3 stopover sites, we investigate by capture-recapture models whether this decision is dependent on actual fuel stores and fuel deposition rates. Individuals that accumulated fuel stores at medium rates departed later than individuals that either lost fuel stores during their stopover or able to increase their fuel stores quickly. This pattern was consistent among all sites. The departure decision was not dependent on actual fuel stores at 2 stopover sites. At the site facing an ecological barrier, emigration probability increased with increasing fuel stores, indicating that birds wait until they reach a threshold of fuel stores before departing. There was a positive correlation between departure fuel load and fuel deposition rate at all sites, which is in accordance with the time-minimizing hypothesis. These results suggest that the decision to depart from a stopover site is based on rather simple behavioral rules: birds that lose fuel stores or that increase fuel stores at a high rate would leave a site quickly, whereas birds increasing fuel stores at intermediate rates would stay for a longer time. The departure decision is shaped also by the position of the stopover site in relation to the next one and may be affected further by environmental factor

    Possible causes and consequences of philopatry and breeding dispersal in red-backed shrikes Lanius collurio

    Get PDF
    Studies of animal breeding dispersal have often focused on possible causes, whereas its adaptive significance has received less attention. Using an information-theoretic approach, we assessed predictions of four hypotheses relating to causes and consequences of breeding dispersal in a migratory passerine, the red-backed shrike Lanius collurio. As predicted by the reproductive performance hypothesis, probability of breeding dispersal in females (though not in males) decreased with increasing annual average number of fledglings produced in the past year, but there was no association with conspecific reproductive performance in either sex. The site choice hypothesis, stating that individuals disperse to improve breeding site quality, received support in males only, as dispersal probability was positively associated to a measure indicating low territory quality. The social constraints hypothesis, referring to dispersal in relation to intraspecific interactions, received little support in either sex. The predation risk hypothesis was hardly supported either. Consequences of dispersal were marginal in both sexes because neither fledgling production in females, nor territory quality in males improved after dispersal. In addition, males settled on territories closer to the forest edge than those occupied predispersal, which is opposite to the prediction of the predation risk hypothesis. We conclude that own reproductive success was the major factor determining dispersal behavior in females, whereas territory quality and possibly predation risk were most important in males. Overall, breeding dispersal appeared not to be adaptive in this dense population inhabiting an optimal habita

    Habitat structure versus food abundance: the importance of sparse vegetation for the common redstart Phoenicurus phoenicurus

    Get PDF
    As many other birds breeding in agricultural areas, the common redstart declined strongly in many Central European countries over the last 60years. The destruction of traditionally managed orchards, an important breeding habitat in Central Europe, is a relevant cause. An additional factor for the decline of this species could be the intensified management of the ground vegetation in orchards through reducing food availability and lowering prey detectability and accessibility. In this study we examined the importance of surfaces with sparse vegetation for the location of redstart territories and for foraging. To validate the results of these field studies we made habitat-choice experiments in aviaries with captive birds. Territories occupied by redstarts in orchards of northwestern Switzerland contained a significantly higher proportion of surfaces with sparse vegetation than unoccupied control sites. Redstarts made almost five times more hunting flights into experimentally established ruderal vegetation strips than into adjacent unmown meadows. No difference was observed when the meadow was freshly mown. Vegetation height and the proportion of open ground surface correctly predicted the vegetation type for hunting in 77% of the cases. Experiments in aviaries offering two types of sparse vegetation and a dense meadow supported the results of the field experiments. Even a four-fold increase of the food abundance in the meadow did not lead to a noticeable change in preference for the sparse vegetation types. For the conservation of the common redstart, not only traditionally managed orchards with tall trees with cavities should be preserved but also areas with sparse vegetation should be favore

    Possible causes and consequences of philopatry and breeding dispersal in red-backed shrikes

    Get PDF
    Studies of animal breeding dispersal have often focused on possible causes, whereas its adaptive significance has received less attention. Using an information-theoretic approach, we assessed predictions of four hypotheses relating to causes and consequences of breeding dispersal in a migratory passerine, the red-backed shrike Lanius collurio. As predicted by the reproductive performance hypothesis, probability of breeding dispersal in females (though not in males) decreased with increasing annual average number of fledglings produced in the past year, but there was no association with conspecific reproductive performance in either sex. The site choice hypothesis, stating that individuals disperse to improve breeding site quality, received support in males only, as dispersal probability was positively associated to a measure indicating low territory quality. The social constraints hypothesis, referring to dispersal in relation to intraspecific interactions, received little support in either sex. The predation risk hypothesis was hardly supported either. Consequences of dispersal were marginal in both sexes because neither fledgling production in females, nor territory quality in males improved after dispersal. In addition, males settled on territories closer to the forest edge than those occupied predispersal, which is opposite to the prediction of the predation risk hypothesis. We conclude that own reproductive success was the major factor determining dispersal behavior in females, whereas territory quality and possibly predation risk were most important in males. Overall, breeding dispersal appeared not to be adaptive in this dense population inhabiting an optimal habitat

    Year-round tracking of small trans-Saharan migrants using light-level geolocators

    Get PDF
    Since 1899 ringing (or banding) remained the most important source of information about migration routes, stopover sites and wintering grounds for birds that are too small to carry satellite-based tracking systems. Despite the large quantity of migrating birds ringed in their breeding areas in Europe, the number of ring recoveries from sub-Saharan Africa is very low and therefore the whereabouts of most small bird species outside the breeding season remain a mystery. With new miniaturized light-level geolocators it is now possible to look beyond the limits of ring recovery data. Here we show for the first time year round tracks of a near passerine trans-Saharan migrant, the European Hoopoe (Upupa epops epops). Three birds wintered in the Sahel zone of Western Africa where they remained stationary for most of the time. One bird chose a south-easterly route following the Italian peninsula. Birds from the same breeding population used different migration routes and wintering sites, suggesting a low level of migratory connectivity between breeding and wintering areas. Our tracking of a near passerine bird, the European Hoopoe, with light-level geolocators opens a new chapter in the research of Palaearctic-African bird migration as this new tool revolutionizes our ability to discover migration routes, stopover sites and wintering grounds of small birds

    Ecological and social effects on reproduction and local recruitment in the red-backed shrike

    Get PDF
    Numerous hypotheses have been proposed to explain variation in reproductive performance and local recruitment of animals. While most studies have examined the influence of one or a few social and ecological factors on fitness traits, comprehensive analyses jointly testing the relative importance of each of many factors are rare. We investigated how a multitude of environmental and social conditions simultaneously affected reproductive performance and local recruitment of the red-backed shrike Lanius collurio (L.). Specifically, we tested hypotheses relating to timing of breeding, parental quality, nest predation, nest site selection, territory quality, intraspecific density and weather. Using model selection procedures, predictions of each hypothesis were first analysed separately, before a full model was constructed including variables selected in the single-hypothesis tests. From 1988 to 1992, 50% of 332 first clutches produced at least one fledgling, while 38.7% of 111 replacement clutches were successful. Timing of breeding, nest site selection, predation pressure, territory quality and intraspecific density influenced nest success in the single-hypothesis tests. The full model revealed that nest success was negatively associated with laying date, intraspecific density, and year, while nest success increased with nest concealment. Number of fledglings per successful nest was only influenced by nest concealment: better-camouflaged nests produced more fledglings. Probability of local recruitment was related to timing of breeding, parental quality and territory quality in the single-hypothesis tests. The full models confirmed the important role of territory quality for recruitment probability. Our results suggest that reproductive performance, and particularly nest success, of the red-backed shrike is primarily affected by timing of breeding, nest site selection, and intraspecific density. This study highlights the importance of considering many factors at the same time, when trying to evaluate their relative contributions to fitness and life history evolutio

    A summary

    Get PDF
    Coinciding with the Open Access Week 2010 we publish a study on the perceptions and usage trends amongst CSIC scientific community as regards Open Access in general and CSIC institutional repository in particular.Peer reviewe
    • …
    corecore