890 research outputs found

    Harmonic Generation in Nanoscale Ferroelectric Films

    Get PDF

    Nanoscale Ferroelectric Films, Strips and Boxes

    Get PDF

    Multiple-Choice Testing Using Immediate Feedback-Assessment Technique (IF AT®) Forms: Second-Chance Guessing vs. Second-Chance Learning?

    Get PDF
    Multiple choice testing is a common but often ineffective method for evaluating learning. A newer approach, however, using Immediate Feedback Assessment Technique (IF AT®, Epstein Educational Enterprise, Inc.) forms, offers several advantages. In particular, a student learns immediately if his or her answer is correct and, in the case of an incorrect answer, has an opportunity to provide a second response and receive partial credit for a correct second attempt. For a multiple choice question with five possible answers, the IF AT® form covers spaces labeled A through E with a thin opaque film; when the film is scratched away, a star indicates the correct answer. This study was conducted in order to assess learning after an initial incorrect answer. Based on random chance, students should have mathematically a 25% chance of guessing a correct second answer (i.e. 1 of 4 remaining answers on the IF AT® form). Analysis of second responses for 8775 questions on IF AT® forms in 22 classes over 3 years showed that the percent of correct second answers was 44.9%, significantly higher than one might expect from random guessing. This indicates that students learned from an incorrect answer and, possibly by re-reading the problem, were able to demonstrate some level of mastery of the material. This data leads us to conclude that IF AT® forms are useful assessment tools

    Modeling metallic island coalescence stress via adhesive contact between surfaces

    Full text link
    Tensile stress generation associated with island coalescence is almost universally observed in thin films that grow via the Volmer-Weber mode. The commonly accepted mechanism for the origin of this tensile stress is a process driven by the reduction in surface energy at the expense of the strain energy associated with the deformation of coalescing islands during grain boundary formation. In the present work, we have performed molecular statics calculations using an embedded atom interatomic potential to obtain a functional form of the interfacial energy vs distance between two closely spaced free surfaces. The sum of interfacial energy plus strain energy provides a measure of the total system energy as a function of island separation. Depending on the initial separation between islands, we find that in cases where coalescence is thermodynamically favored, gap closure can occur either spontaneously or be kinetically limited due to an energetic barrier. Atomistic simulations of island coalescence using conjugate gradient energy minimization calculations agree well with the predicted stress as a function of island size from our model of spontaneous coalescence. Molecular dynamics simulations of island coalescence demonstrate that only modest barriers to coalescence can be overcome at room temperature. A comparison with thermally activated coalescence results at room temperature reveals that existing coalescence models significantly overestimate the magnitude of the stress resulting from island coalescence.Comment: 20 pages, 8 figures, 2 tables, submitted to PR

    WebTraceMiner: a web service for processing and mining EST sequence trace files

    Get PDF
    Expressed sequence tags (ESTs) remain a dominant approach for characterizing the protein-encoding portions of various genomes. Due to inherent deficiencies, they also present serious challenges for data quality control. Before GenBank submission, EST sequences are typically screened and trimmed of vector and adapter/linker sequences, as well as polyA/T tails. Removal of these sequences presents an obstacle for data validation of error-prone ESTs and impedes data mining of certain functional motifs, whose detection relies on accurate annotation of positional information for polyA tails added posttranscriptionally. As raw DNA sequence information is made increasingly available from public repositories, such as NCBI Trace Archive, new tools will be necessary to reanalyze and mine this data for new information. WebTraceMiner (www.conifergdb.org/software/wtm) was designed as a public sequence processing service for raw EST traces, with a focus on detection and mining of sequence features that help characterize 3′ and 5′ termini of cDNA inserts, including vector fragments, adapter/linker sequences, insert-flanking restriction endonuclease recognition sites and polyA or polyT tails. WebTraceMiner complements other public EST resources and should prove to be a unique tool to facilitate data validation and mining of error-prone ESTs (e.g. discovery of new functional motifs)

    Probing the extragalactic fast transient sky at minute timescales with DECam

    Get PDF
    Searches for optical transients are usually performed with a cadence of days to weeks, optimised for supernova discovery. The optical fast transient sky is still largely unexplored, with only a few surveys to date having placed meaningful constraints on the detection of extragalactic transients evolving at sub-hour timescales. Here, we present the results of deep searches for dim, minute-timescale extragalactic fast transients using the Dark Energy Camera, a core facility of our all-wavelength and all-messenger Deeper, Wider, Faster programme. We used continuous 20s exposures to systematically probe timescales down to 1.17 minutes at magnitude limits g>23g > 23 (AB), detecting hundreds of transient and variable sources. Nine candidates passed our strict criteria on duration and non-stellarity, all of which could be classified as flare stars based on deep multi-band imaging. Searches for fast radio burst and gamma-ray counterparts during simultaneous multi-facility observations yielded no counterparts to the optical transients. Also, no long-term variability was detected with pre-imaging and follow-up observations using the SkyMapper optical telescope. We place upper limits for minute-timescale fast optical transient rates for a range of depths and timescales. Finally, we demonstrate that optical gg-band light curve behaviour alone cannot discriminate between confirmed extragalactic fast transients such as prompt GRB flashes and Galactic stellar flares.Comment: Published in MNRA

    A Unified Framework for the Infection Dynamics of Zoonotic Spillover and Spread.

    Get PDF
    A considerable amount of disease is transmitted from animals to humans and many of these zoonoses are neglected tropical diseases. As outbreaks of SARS, avian influenza and Ebola have demonstrated, however, zoonotic diseases are serious threats to global public health and are not just problems confined to remote regions. There are two fundamental, and poorly studied, stages of zoonotic disease emergence: 'spillover', i.e. transmission of pathogens from animals to humans, and 'stuttering transmission', i.e. when limited human-to-human infections occur, leading to self-limiting chains of transmission. We developed a transparent, theoretical framework, based on a generalization of Poisson processes with memory of past human infections, that unifies these stages. Once we have quantified pathogen dynamics in the reservoir, with some knowledge of the mechanism of contact, the approach provides a tool to estimate the likelihood of spillover events. Comparisons with independent agent-based models demonstrates the ability of the framework to correctly estimate the relative contributions of human-to-human vs animal transmission. As an illustrative example, we applied our model to Lassa fever, a rodent-borne, viral haemorrhagic disease common in West Africa, for which data on human outbreaks were available. The approach developed here is general and applicable to a range of zoonoses. This kind of methodology is of crucial importance for the scientific, medical and public health communities working at the interface between animal and human diseases to assess the risk associated with the disease and to plan intervention and appropriate control measures. The Lassa case study revealed important knowledge gaps, and opportunities, arising from limited knowledge of the temporal patterns in reporting, abundance of and infection prevalence in, the host reservoir.Natural Environment Research Council (project no.: NEJ001570-1), Department for International Development, Economic and Social Research Council, National Institute for Health Research, Science and Technology Directorate, Department of Homeland Security, Fogarty International Center USA, European Union FP7 (project ANTIGONE (contract number 278976)), Royal Society (Wolfson Research Merit Award), Alborada Trust, US National Institute of Health (P20GM103501, BAANIAID-DAIT-NIHQI2008031, HHSN272201000022C, HHSN272200900049C, 1U19AI109762, 1R01AI104621, 2R44AI088843), USAID/NIH PEER Health grant.This is the final version of the article. It first appeared from the Public Library of Science via http://dx.doi.org/10.1371/journal.pntd.000495

    Using modelling to disentangle the relative contributions of zoonotic and anthroponotic transmission: the case of lassa fever.

    Get PDF
    BACKGROUND: Zoonotic infections, which transmit from animals to humans, form the majority of new human pathogens. Following zoonotic transmission, the pathogen may already have, or may acquire, the ability to transmit from human to human. With infections such as Lassa fever (LF), an often fatal, rodent-borne, hemorrhagic fever common in areas of West Africa, rodent-to-rodent, rodent-to-human, human-to-human and even human-to-rodent transmission patterns are possible. Indeed, large hospital-related outbreaks have been reported. Estimating the proportion of transmission due to human-to-human routes and related patterns (e.g. existence of super-spreaders), in these scenarios is challenging, but essential for planned interventions. METHODOLOGY/PRINCIPAL FINDINGS: Here, we make use of an innovative modeling approach to analyze data from published outbreaks and the number of LF hospitalized patients to Kenema Government Hospital in Sierra Leone to estimate the likely contribution of human-to-human transmission. The analyses show that almost [Formula: see text] of the cases at KGH are secondary cases arising from human-to-human transmission. However, we found much of this transmission is associated with a disproportionally large impact of a few individuals ('super-spreaders'), as we found only [Formula: see text] of human cases result in an effective reproduction number (i.e. the average number of secondary cases per infectious case) [Formula: see text], with a maximum value up to [Formula: see text]. CONCLUSIONS/SIGNIFICANCE: This work explains the discrepancy between the sizes of reported LF outbreaks and a clinical perception that human-to-human transmission is low. Future assessment of risks of LF and infection control guidelines should take into account the potentially large impact of super-spreaders in human-to-human transmission. Our work highlights several neglected topics in LF research, the occurrence and nature of super-spreading events and aspects of social behavior in transmission and detection.This work for the Dynamic Drivers of Disease in Africa Consortium, NERC project no. NE-J001570-1, was funded with support from the Ecosystem Services for Poverty Alleviation (ESPA) programme. The ESPA programme is funded by the Department for International Development (DFID), the Economic and Social Research Council (ESRC) and the Natural Environment Research Council (NERC). See more at: http://www.espa.ac.uk/about/identity/acknowledging-espafunding# sthash.UivKPObf.dpuf. GL, JLNW, AAC, CTW and EFC also benefit from the support of the small mammal disease working group, funded by the Research and Policy for Infectious Disease Dynamics (RAPIDD) programme of the Science and Technology Directorate, Department of Homeland Security, and Fogarty International Center, USA. JLNW and AC were also supported by the European Union FP7 project ANTIGONE (contract number 278976). AAC is supported by a Royal Society Wolfson Reearch Merit Award. JLNW is also supported by the Alborada Trust. JSS, LM, RG, and JGS were supported by the US National Institute of Health (JSS: NIH grant P20GM103501; LM, RG, JGS: NIH grant BAA-NIAID-DAIT-NIHQI2008031).This is the final published version. It first appeared at http://www.plosntds.org/article/info%3Adoi%2F10.1371%2Fjournal.pntd.0003398

    Performativity and primary teacher relations

    Get PDF
    A performativity discourse currently pervades teachers' work. It is a discourse that relies on teachers and schools instituting self-disciplinary measures to satisfy newly transparent public accountability and it operates alongside a market discourse. The introduction of the performativity discourse has affected teacher relations at three levels of professional work: with students, colleagues and local advisor/inspectors. Ethnographic research with primary teachers - which focused on their experience of Ofsted inspections in six schools over periods of up to four years - is the source of this paper. The paper argues that a humanist discourse prevalent in teacher relations with students, colleagues and advisor/inspectors has been challenged by a performativity discourse that: distances teachers from students and creates a dependency culture in opposition to previous mutual and intimate relations; creates self disciplining teams that marginalize individuality and stratifies collegial relations in opposition to previous relations where primary teachers sought consensus; and creates subjugatory, contrived and de-personalized relations between local advisors/inspectors in preference to previous partnership relations. The paper concludes that the change in relations is an indicator of fundamental change to social relations but that primary teachers are in a good position to influence the performativity discourse, albeit it a struggle, by reconstituting it through the maintenance of humanist relations

    Indicators and Benchmarks for Wind Erosion Monitoring, Assessment and Management

    Get PDF
    Wind erosion and blowing dust threaten food security, human health and ecosystem services across global drylands. Monitoring wind erosion is needed to inform management, with explicit monitoring objectives being critical for interpreting and translating monitoring information into management actions. Monitoring objectives should establish quantitative guidelines for determining the relationship of wind erosion indicators to management benchmarks that reflect tolerable erosion and dust production levels considering impacts to, for example, ecosystem processes, species, agricultural production systems and human well-being. Here we: 1) critically review indicators of wind erosion and blowing dust that are currently available to practitioners; and 2) describe approaches for establishing benchmarks to support wind erosion assessments and management. We find that while numerous indicators are available for monitoring wind erosion, only a subset have been used routinely and most monitoring efforts have focused on air quality impacts of dust. Indicators need to be related to the causal soil and vegetation controls in eroding areas to directly inform management. There is great potential to use regional standardized soil and vegetation monitoring datasets, remote sensing and models to provide new information on wind erosion across landscapes. We identify best practices for establishing benchmarks for these indicators based on experimental studies, mechanistic and empirical models, and distributions of indicator values obtained from monitoring data at historic or existing reference sites. The approaches to establishing benchmarks described here have enduring utility as monitoring technologies change and enable managers to evaluate co-benefits and potential trade-offs among ecosystem services as affected by wind erosion management
    corecore