35 research outputs found

    Capsules and Separation

    Full text link
    We study a formulation of separation logic using capsules, a representation of the state of a computation in higher-order programming languages with mutable variables. We prove soundness of the frame rule in this context and investigate alternative formulations with weaker side conditions

    Computing with Capsules

    Full text link
    Capsules provide a clean algebraic representation of the state of a computation in higher-order functional and imperative languages. They play the same role as closures or heap- or stack-allocated environments but are much simpler. A capsule is essentially a finite coalgebraic representation of a regular closed lambda-coterm. One can give an operational semantics based on capsules for a higher-order programming language with functional and imperative features, including mutable bindings. Lexical scoping is captured purely algebraically without stacks, heaps, or closures. All operations of interest are typable with simple types, yet the language is Turing complete. Recursive functions are represented directly as capsules without the need for unnatural and untypable fixpoint combinators

    Capsules And Non-Well-Founded Computation

    Full text link

    Automating Geometric Proofs of Collision Avoidance with Active Corners

    Full text link
    Avoiding collisions between obstacles and vehicles such as cars, robots or aircraft is essential to the development of automation and autonomy. To simplify the problem, many collision avoidance algorithms and proofs consider vehicles to be a point mass, though the actual vehicles are not points. In this paper, we consider a convex polygonal vehicle with nonzero area traveling along a 2-dimensional trajectory. We derive an easily-checkable, quantifier-free formula to check whether a given obstacle will collide with the vehicle moving on the planned trajectory. We apply our method to two case studies of aircraft collision avoidance and study its performance.Comment: 13 pages, 11 figures, conference pape

    Formal Verification of Safety Buffers for Sate-Based Conflict Detection and Resolution

    Get PDF
    The information provided by global positioning systems is never totally exact, and there are always errors when measuring position and velocity of moving objects such as aircraft. This paper studies the effects of these errors in the actual separation of aircraft in the context of state-based conflict detection and resolution. Assuming that the state information is uncertain but that bounds on the errors are known, this paper provides an analytical definition of a safety buffer and sufficient conditions under which this buffer guarantees that actual conflicts are detected and solved. The results are presented as theorems, which were formally proven using a mechanical theorem prover

    Fission: Secure Dynamic Code-Splitting for JavaScript

    Get PDF
    Traditional web programming involves the creation of two distinct programs: a client-side front-end, a server-side back-end, and a lot of communications boilerplate. An alternative approach is to use a tierless programming model, where a single program describes the behavior of both the client and the server, and the runtime system takes care of communication. Unfortunately, this usually entails adopting a new language and thus abandoning well-worn libraries and web programming tools. In this paper, we present our ongoing work on Fission, a platform that uses dynamic tier-splitting and dynamic information flow control to transparently run a single JavaScript program across the client and server. Although static tier-splitting has been studied before, our focus on dynamic approaches presents several new challenges and opportunities. For example, Fission supports characteristic JavaScript features such as eval and sophisticated JavaScript libraries like React. Therefore, programmers can reason about the integrity and confidentiality of information while continuing to use common libraries and programming patterns. Moreover, by unifying the client and server into a single program, Fission allows language-based tools, like type systems and IDEs, to manipulate complete web applications. To illustrate, we use TypeScript to ensure that client-server communication does not go wrong

    Security Verification of Low-Trust Architectures

    Full text link
    Low-trust architectures work on, from the viewpoint of software, always-encrypted data, and significantly reduce the amount of hardware trust to a small software-free enclave component. In this paper, we perform a complete formal verification of a specific low-trust architecture, the Sequestered Encryption (SE) architecture, to show that the design is secure against direct data disclosures and digital side channels for all possible programs. We first define the security requirements of the ISA of SE low-trust architecture. Looking upwards, this ISA serves as an abstraction of the hardware for the software, and is used to show how any program comprising these instructions cannot leak information, including through digital side channels. Looking downwards this ISA is a specification for the hardware, and is used to define the proof obligations for any RTL implementation arising from the ISA-level security requirements. These cover both functional and digital side-channel leakage. Next, we show how these proof obligations can be successfully discharged using commercial formal verification tools. We demonstrate the efficacy of our RTL security verification technique for seven different correct and buggy implementations of the SE architecture.Comment: 19 pages with appendi

    NetKAT: Semantic Foundations for Networks

    Full text link
    Recent years have seen growing interest in high-level languages for programming networks. But the design of these languages has been largely ad hoc, driven more by the needs of applications and the capabilities of network hardware than by foundational principles. The lack of a semantic foundation has left language designers with little guidance in determining how to incorporate new features, and programmers without a means to reason precisely about their code. This paper presents NetKAT, a new network programming language that is based on a solid mathematical foundation and comes equipped with a sound and complete equational theory. We describe the design of NetKAT, including primitives for filtering, modifying, and transmitting packets; operators for combining programs in parallel and in sequence; and a Kleene star operator for iteration. We show that NetKAT is an instance of a canonical and well studied mathematical structure called a Kleene algebra with tests (KAT) and prove that its equational theory is sound and complete with respect to its denotational semantics. Finally, we present practical applications of the equational theory including syntactic techniques for checking reachability properties, proving the correctness of compilation and optimization algorithms, and establishing a non-interference property that ensures isolation between programs.Supported in part by the NSF under grant CNS-1111698, the ONR under award N00014-12-1-0757, a Sloan Research Fellowship, and a Google Research Award
    corecore