2 research outputs found

    Additional file 1: Supplemental figures. of Neural stem cells for disease modeling of Wolman disease and evaluation of therapeutics

    No full text
    Figure S1. Immunocytochemical characterization of WD iPSCs. Figure S2. STR DNA analysis of WD fibroblasts, iPSCs, and NSCs. Figure S3. LysoTracker staining and Nile red staining of LDL loaded NSCs. Figure S4. HT144B NSCs show increased LysoTracker staining. Figure S5. Chemical structures. Figure S6. DT and HPBCD treatment reduces lysosomal staining in HT144B NSCs. Figure S7. DT and HPBCD do not significantly reduce neutral lipid accumulation in WD NSCs. Figure S8. High concentrations of DT and HPBCD affect cell viability. Figure S9. DT and HPBCD combination treatment have an additive effect on reducing lysosomal staining in HT144B NSCs. (PDF 652 kb

    Additional file 1 of Neural stem cells for disease modeling and evaluation of therapeutics for infantile (CLN1/PPT1) and late infantile (CLN2/TPP1) neuronal ceroid lipofuscinoses

    No full text
    Figure S1. Generation of Neuronal Ceroid Lipofuscinosis (NCL) induced pluripotent stem cells (iPSCs). Figure S2. Pluripotent stem cell protein markers analyzed by flow cytometry. Figure S3. Immunofluorescence staining of iPSC pluripotent stem cell protein markers. Figure S4. Protein marker expression in NSCs differentiated from WT control and NCL patient iPSCs. Figure S5. Enlarged lysosomes and lipid accumulation in NCL patient fibroblasts. Figure S6. Filipin staining in NCL fibroblasts and NSCs. Figure S7. Cytotoxicity of DT and HPBCD on NCL patient NSCs. Figure S8. Lysosomal pH indicated by a pHrodo™ pH sensor dye in NCL patient NSCs. (PDF 1842 kb
    corecore