109 research outputs found

    The flitting of electrons in complex I: A stochastic approach

    Get PDF
    AbstractA stochastic approach based on the Gillespie algorithm is particularly well adapted to describe the time course of the redox reactions that occur inside the respiratory chain complexes because they involve the motion of single electrons between the individual unique redox centres of a given complex. We use this approach to describe the molecular functioning of the peripheral arm of complex I based on its known crystallographic structure and the rate constants of electron tunnelling derived from the Moser and Dutton phenomenological equations. There are several possible electrons pathways but we show that most of them take the route defined by the successive sites and redox centres: NADH+ site – FMN – N3 – N1b – N4 – N5 – N6a – N6b – N2 – Q site. However, the electrons do not go directly from NADH towards the ubiquinone molecule. They frequently jump back and forth between neighbouring redox centres with the result that the net flux of electrons through complex I (i.e. net number of electrons reducing a ubiquinone) is far smaller than the number of redox reactions which actually occur. While most of the redox centres are reduced in our simulations the degree of reduction can vary according to the individual midpoint potentials. The high turnover number observed in our simulation seems to indicate that, in the whole complex I, one or several slower step(s) follow(s) the redox reactions involved in the peripheral arm. It also appears that the residence time of FMNH• and SQ• (possible producers of ROS) is low (around 4% and between 1.6% and 5% respectively according to the values of the midpoint potentials). We did not find any evidence for a role of N7 which remains mainly reduced in our simulations. The role of N1a is complex and depends upon its midpoint potential. In all cases its presence slightly decreases the life time of the flavosemiquinone species. These simulations demonstrate the interest of this type of model which links the molecular physico-chemistry of the individual redox reactions to the more global level of the reaction, as is observed experimentally

    Simulation of mitochondrial metabolism using multi-agents system

    Full text link
    Metabolic pathways describe chains of enzymatic reactions. Their modelling is a key point to understand living systems. An enzymatic reaction is an interaction between one or several metabolites (substrates) and an enzyme (simple protein or enzymatic complex build of several subunits). In our Mitochondria in Silico Project, MitoScop, we study the metabolism of the mitochondria, an intra-cellular organelle. Many ordinary differential equation models are available in the literature. They well fit experimental results on flux values inside the metabolic pathways, but many parameters are di±\pmcult to transcribe with such models: localization of enzymes, rules about the reactions scheduler, etc Moreover, a model of a significant part of mitochondrial metabolism could become very complex and contain more than 50 equations. In this context, the multi-agents systems appear as an alternative to model the metabolic pathways. Firstly, we have looked after membrane design. The mitochondria is a particular case because the inner mitochondrial space, ie matricial space, is delimited by two membranes: the inner and the outer one. In addition to matricial enzymes, other enzymes are located inside the membranes or in the inter-membrane space. Analysis of mitochondrial metabolism must take into account this kind of architecture

    Modélisation de la Chaîne Respiratoire et de la Phosphorylation Oxydative

    Get PDF
    Mitochondria are cell organelles which play an essential role in the cell energy supply providing the universal high energetic molecule ATP which is used in numerous energy consuming processes. The core of the ATP production, oxidative phosphorylation (OXPHOS) consists of four enzyme complexes (respiratory chain) which establish, driven by redox reactions, a proton gradient over the inner mitochondrial membrane. The ATP-synthase uses this electrochemical gradient to phosphorylate ADP to ATP. Dysfunctioning of an OXPHOS complex can have severe consequences for the energy metabolism and cause rare but incurable dysfunctions in particular tissues with a high energy demand such as brain, heart, kidney and skeleton muscle. Moreover mitochondria are linked to widespread diseases like diabetes, cancer, Alzheimer and Parkinson. Further, reactive oxygen species which are a by-product of the respiratory chain, are supposed to play a crucial role in aging. The aim of this work is to provide a realistic model of OXPHOS which shall help understanding and predicting the interactions within the OXPHOS and how a local defect (enzyme deficiency or modification) is expressed globally in mitochondrial oxygen consumption and ATP synthesis. Therefore we chose a bottom-up approach. In a first step different types of rate equations were analyzed regarding their ability to describe the steady state kinetics of the isolated respiratory chain complexes in the absence of the proton gradient. Here Michaelis-Menten like rate equations were revealed to be appropriate for describing their behavior over a wide range of substrate and product concentrations. For the validation of the equations and the parameter estimation we have performed kinetic measurements on bovine heart submitochondrial particles. The next step consisted in the incorporation of the proton gradient into the rate equations, distributing its influence among the kinetic parameters such that reasonable rates were obtained in the range of physiological electrochemical potential differences. In the third step, these new individual kinetic rate expressions for the OXPHOS complexes were integrated in a global model of oxidative phosphorylation. The new model could fit interrelated data of oxygen consumption, the transmembrane potential and the redox state of electron carriers. Furthermore, flux inhibitor titration curves can be well reproduced, which validates its global responses to local effects. This model may be of great help to understand the increasingly recognized role of mitochondria in many cell processes and diseases as illustrated by some simulations proposed in this work.Les mitochondries sont l usine à énergie de la cellule. Elles synthétisent l ATP à partir d une succession de réactions d oxydo-réduction catalysées par quatre complexes respiratoires qui forment la chaîne respiratoire. Avec la machinerie de synthèse d ATP l ensemble constitue les oxydations phosphorylantes (OXPHOS). Le but de ce travail est de bâtir un modèle des OXPHOS basé sur des équations de vitesse simples mais thermodynamiquement correctes, représentant l activité des complexes de la chaîne respiratoire (équations de type Michaelis- Menten). Les paramètres cinétiques de ces équations sont identifiés en utilisant les cinétiques expérimentales de ces complexes respiratoires réalisées en absence de gradient de proton. La phase la plus délicate de ce travail a résidé dans l introduction du gradient de protons dans ces équations. Nous avons trouvé que la meilleure manière était de distribuer l effet du gradient de proton sous forme d une loi exponentielle sur l ensemble des paramètres, Vmax et Km pour les substrats et les produits. De cette manière, j ai montré qu il était possible de représenter les variations d oxygène, de et de pH trouvés dans la littérature. De plus, contrairement aux autres modèles, il fut possible de simuler les courbes de seuil observées expérimentalement lors de la titration du flux de respiration par l inhibiteur d un complexe respiratoire donné.Ce modèle pourra présenter un très grand intérêt pour comprendre le rôle de mieux en mieux reconnu des mitochondries dans de nombreux processus cellulaires, tels que la production d espèces réactives de l oxygène, le vieillissement, le diabète, le cancer, les pathologies mitochondriales etc. comme l illustrent un certain nombre de prédictions présentées dans ce travail.BORDEAUX2-Bib. électronique (335229905) / SudocSudocFranceF

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Analyse de la structure des réseaux métaboliques (application au métabolisme énergétique mitochondrial)

    No full text
    L'analyse des voies métaboliques est une étape essentielle pour étudier les comportements d'un réseau métabolique. Une approche théorique telle les modes élémentaires permet d'analyser les propriétés structurales du réseau. Leur recherche dans un réseau métabolique est souvent caractérisée par une explosion combinatoire de leur nombre. Nous avons appliqué ce formalisme à trois réseaux métaboliques : le réseau mitochondrial énergétique du muscle, du foie et de la levure. Nous avons ensuite construit une méthode de classification des modes élémentaires afin d'analyser les résultats obtenus. Cette méthode basée sur l'agglomération de motifs communs nous permet d'interpréter de grands ensembles de modes élémentaires, de retrouver les fonctions biologiques partagées par ces groupes et de mettre en évidence des liens entre les réactions.Metabolic pathway analysis is essential to study metabolic network behaviour. Theorical approach like elementary flux mode enables to study the network structural properties. Their determination lead to combinatorial explosion of their number when the network is complex. We have applied this formalism to three metabolic networks : mitochondrial energetic metabolism of muscle, liver and yeast. We have elaborate a classification method of elementary modes to analyze the obtained results. This method, based on an agglomeration of commun motifs allows us to interpret classes of elementary modes, to find their biological meaning and to express links between reactions.BORDEAUX2-BU Santé (330632101) / SudocPARIS-BIUP (751062107) / SudocSudocFranceF
    • …
    corecore