6 research outputs found

    Sodium-Doped Gold-Assisted Laser Desorption Ionization for Enhanced Imaging Mass Spectrometry of Triacylglycerols from Thin Tissue Sections

    No full text
    The deposition of sodium salts followed by a sputtered layer of gold has been demonstrated to be a power combination for the analysis of triacylglycerols (TAGs) from tissue sections by laser desorption ionization (LDI) imaging mass spectrometry (IMS). Various sodium salts were tested for their capability to ionize TAGs and their ability to produce fast drying, small crystals (≤3 μm). The spray deposition of a sodium acetate and carbonate buffer mixture at pH 10.3 on which a 28 ± 3 nm sputtered layer of gold (Au-CBS) is subsequently deposited was found to provide the most effective combination for TAG analysis by high imaging resolution IMS. Under these conditions, a 30-fold increase in TAG signal intensity was observed when compared to matrix-assisted LDI (MALDI) methods using 2,5-dihydrobenzoic acid as matrix. Furthermore, Au-CBS led to an increase in the number of detected TAG species from ∼7 with DHB to more than 25 with the novel method, while few phospholipid signals were observed. These results were derived from the IMS investigation of fresh frozen mouse liver and rabbit adrenal gland tissue sections with a range of higher spatial resolutions between 35 and 10 μm. Au-CBS-LDI MS presents a highly sensitive and specific alternative to MALDI MS for imaging of TAGs from tissue sections. This novel approach has the potential to provide new biological insights on the role of TAGs in both health and disease

    Response Monitoring of Acute Lymphoblastic Leukemia Patients Undergoing l‑Asparaginase Therapy: Successes and Challenges Associated with Clinical Sample Analysis in Plasmonic Sensing

    No full text
    Monitoring the response of patients undergoing chemotherapeutic treatments is of great importance to predict remission success, avoid adverse effects and thus, maximize the patients’ quality of life. In the case of leukemia patients treated with E. coli l-asparaginase, monitoring the immune response by the detection of specific antibodies to l-asparaginase in the serum of patients can prevent extended immune response to the drug. Here, we developed a surface plasmon resonance (SPR) biosensor to rapidly detect anti-asparaginase antibodies directly in patients’ sera, without requiring sample pretreatment or dilution. A direct assay with SPR sensing to detect anti-asparaginase antibodies exhibited a limit of detection of 500 pM and a high sensitivity range between 100 nM and 1 μM in pooled and undiluted human serum from a commercial source. While the SPR assay showed excellent reproducibility (12% RSD) in pooled serum, challenges were encountered upon analyzing clinical samples due to high sample-to-sample variability in color and turbidity and, in all likelihood, in composition. As a result, direct detection in clinical samples was unreliable due to factors that may generally affect assays based on plasmonic detection. Addition of a secondary detection step overcame sample variability due to bulk differences in patients’ sera. By those means, the SPR biosensor was successfully applied to the analysis of clinical samples from leukemia patients undergoing asparaginase treatments and the results agreed well with the standard ELISA assay. Monitoring antibodies against drugs is common such that this type of sensing scheme could serve to monitor a plethora of immune responses in sera of patients undergoing treatment

    Silver-Assisted Laser Desorption Ionization For High Spatial Resolution Imaging Mass Spectrometry of Olefins from Thin Tissue Sections

    No full text
    Silver has been demonstrated to be a powerful cationization agent in mass spectrometry (MS) for various olefinic species such as cholesterol and fatty acids. This work explores the utility of metallic silver sputtering on tissue sections for high resolution imaging mass spectrometry (IMS) of olefins by laser desorption ionization (LDI). For this purpose, sputtered silver coating thickness was optimized on an assorted selection of mouse and rat tissues including brain, kidney, liver, and testis. For mouse brain tissue section, the thickness was adjusted to 23 ± 2 nm of silver to prevent ion suppression effects associated with a higher cholesterol and lipid content. On all other tissues, a thickness of at 16 ± 2 nm provided the best desorption/ionization efficiency. Characterization of the species by MS/MS showed a wide variety of olefinic compounds allowing the IMS of different lipid classes including cholesterol, arachidonic acid, docosahexaenoic acid, and triacylglyceride 52:3. A range of spatial resolutions for IMS were investigated from 150 μm down to the high resolution cellular range at 5 μm. The applicability of direct on-tissue silver sputtering to LDI-IMS of cholesterol and other olefinic compounds presents a novel approach to improve the amount of information that can be obtained from tissue sections. This IMS strategy is thus of interest for providing new biological insights on the role of cholesterol and other olefins in physiological pathways or disease

    Dynamic-SERS Optophysiology: A Nanosensor for Monitoring Cell Secretion Events

    No full text
    We monitored metabolite secretion near living cells using a plasmonic nanosensor. The nanosensor created from borosilicate nanopipettes analogous to the patch clamp was decorated with Au nanoparticles and served as a surface-enhanced Raman scattering (SERS) substrate with addressable location. With this nanosensor, we acquired SERS locally near Madin-Darby canine kidney (MDCKII) epithelial cells, and we detected multiple metabolites, such as pyruvate, lactate, ATP, and urea simultaneously. These plasmonic nanosensors were capable of monitoring metabolites in the extracellular medium with enough sensitivity to detect an increase in metabolite concentration following the lyses of MDCKII cells with a nonionic surfactant. The plasmonic nanosensors also allowed a relative quantification of a chemical gradient for a metabolite near cells, as demonstrated with a decrease in relative lactate to pyruvate concentration further away from the MDCKII cells. This SERS optophysiology technique for the sensitive and nondestructive monitoring of extracellular metabolites near living cells is broadly applicable to different cellular and tissue models and should therefore provide a powerful tool for cellular studies

    Tracking Silent Hypersensitivity Reactions to Asparaginase during Leukemia Therapy Using Single-Chip Indirect Plasmonic and Fluorescence Immunosensing

    No full text
    Microbial asparaginase is an essential component of chemotherapy for the treatment of childhood acute lymphoblastic leukemia (cALL). Silent hypersensitivity reactions to this microbial enzyme need to be monitored accurately during treatment to avoid adverse effects of the drug and its silent inactivation. Here, we present a dual-response anti-asparaginase sensor that combines indirect SPR and fluorescence on a single chip to perform ELISA-type immunosensing, and correlate measurements with classical ELISA. Analysis of serum samples from children undergoing cALL therapy revealed a clear correlation between single-chip indirect SPR/fluorescence immunosensing and ELISA used in clinical settings (<i>R</i><sup>2</sup> > 0.9). We also report that the portable SPR/fluorescence system had a better sensitivity than classical ELISA to detect antibodies in clinical samples with low antigenicity. This work demonstrates the reliability of dual sensing for monitoring clinically relevant antibody titers in clinical serum samples

    Development of Escherichia coli Asparaginase II for Immunosensing: A Trade-Off between Receptor Density and Sensing Efficiency

    No full text
    The clinical success of Escherichia coli l-asparaginase II (EcAII) as a front line chemotherapeutic agent for acute lymphoblastic leukemia (ALL) is often compromised because of its silent inactivation by neutralizing antibodies. Timely detection of silent immune response can rely on immobilizing EcAII, to capture and detect anti-EcAII antibodies. Having recently reported the use of a portable surface plasmon resonance (SPR) sensing device to detect anti-EcAII antibodies in undiluted serum from children undergoing therapy for ALL (Aubé et al., <i>ACS Sensors</i> <b>2016</b>, <i>1</i> (11), 1358–1365), here we investigate the impact of the quaternary structure and the mode of immobilization of EcAII onto low-fouling SPR sensor chips on the sensitivity and reproducibility of immunosensing. We show that the native tetrameric structure of EcAII, while being essential for activity, is not required for antibody recognition because monomeric EcAII is equally antigenic. By modulating the mode of immobilization, we observed that low-density surface coverage obtained upon covalent immobilization allowed each tetrameric EcAII to bind up to two antibody molecules, whereas high-density surface coverage arising from metal chelation by N- or C-terminal histidine-tag reduced the sensing efficiency to less than one antibody molecule per tetramer. Nonetheless, immobilization of EcAII by metal chelation procured up to 10-fold greater surface coverage, thus resulting in increased SPR sensitivity and allowing reliable detection of lower analyte concentrations. Importantly, only metal chelation achieved highly reproducible immobilization of EcAII, providing the sensing reproducibility that is required for plasmonic sensing in clinical samples. This report sheds light on the impact of multiple factors that need to be considered to optimize the practical applications of plasmonic sensors
    corecore