5 research outputs found

    Compilation technique for loop overhead minimization

    No full text

    A non-invasive photonics-based device for monitoring of diabetic foot ulcers: Architectural/sensorial components & technical specifications

    No full text
    This paper proposes a new photonic-based non-invasive device for managing of Diabetic Foot Ulcers (DFUs) for people suffering from diabetes. DFUs are one of the main severe complications of diabetes, which may lead to major disabilities, such as foot amputation, or even to the death. The proposed device exploits hyperspectral (HSI) and thermal imaging to measure the status of an ulcer, in contrast to the current practice where invasive biopsies are often applied. In particular, these two photonic-based imaging techniques can estimate the biomarkers of oxyhaemoglobin (HbO2) and deoxyhaemoglobin (Hb), through which the Peripheral Oxygen Saturation (SpO2) and Tissue Oxygen Saturation (StO2) is computed. These factors are very important for the early prediction and prognosis of a DFU. The device is implemented at two editions: the in-home edition suitable for patients and the PRO (professional) edition for the medical staff. The latter is equipped with active photonic tools, such as tuneable diodes, to permit detailed diagnosis and treatment of an ulcer and its progress. The device is enriched with embedding signal processing tools for noise removal and enhancing pixel accuracy using super resolution schemes. In addition, a machine learning framework is adopted, through deep learning structures, to assist the doctors and the patients in understanding the effect of the biomarkers on DFU. The device is to be validated at large scales at three European hospitals (Charité–University Hospital in Berlin, Germany; Attikon in Athens, Greece, and Victor Babes in Timisoara, Romania) for its efficiency and performance. © 2021 by the authors. Licensee MDPI, Basel, Switzerland

    Pancreatic surgery outcomes: multicentre prospective snapshot study in 67 countries

    No full text
    Background: Pancreatic surgery remains associated with high morbidity rates. Although postoperative mortality appears to have improved with specialization, the outcomes reported in the literature reflect the activity of highly specialized centres. The aim of this study was to evaluate the outcomes following pancreatic surgery worldwide.Methods: This was an international, prospective, multicentre, cross-sectional snapshot study of consecutive patients undergoing pancreatic operations worldwide in a 3-month interval in 2021. The primary outcome was postoperative mortality within 90 days of surgery. Multivariable logistic regression was used to explore relationships with Human Development Index (HDI) and other parameters.Results: A total of 4223 patients from 67 countries were analysed. A complication of any severity was detected in 68.7 percent of patients (2901 of 4223). Major complication rates (Clavien-Dindo grade at least IIIa) were 24, 18, and 27 percent, and mortality rates were 10, 5, and 5 per cent in low-to-middle-, high-, and very high-HDI countries respectively. The 90-day postoperative mortality rate was 5.4 per cent (229 of 4223) overall, but was significantly higher in the low-to-middle-HDI group (adjusted OR 2.88, 95 per cent c.i. 1.80 to 4.48). The overall failure-to-rescue rate was 21 percent; however, it was 41 per cent in low-to-middle-compared with 19 per cent in very high-HDI countries.Conclusion: Excess mortality in low-to-middle-HDI countries could be attributable to failure to rescue of patients from severe complications. The authors call for a collaborative response from international and regional associations of pancreatic surgeons to address management related to death from postoperative complications to tackle the global disparities in the outcomes of pancreatic surgery (NCT04652271; ISRCTN95140761)
    corecore