1,788 research outputs found

    Storage requirements for PV power ramp-rate control

    Get PDF
    Short-term variability in the power generated by large grid-connected photovoltaic (PV) plants can negatively affect power quality and the network reliability. New grid-codes require combining the PV generator with some form of energy storage technology in order to reduce short-term PV power fluctuation. This paper proposes an effective method in order to calculate, for any PV plant size and maximum allowable ramp-rate, the maximum power and the minimum energy storage requirements alike. The general validity of this method is corroborated with extensive simulation exercises performed with real 5-s one year data of 500 kW inverters at the 38.5 MW Amaraleja (Portugal) PV plant and two other PV plants located in Navarra (Spain), at a distance of more than 660 km from Amaraleja

    Detection and Tracking of Traffic Signs Using a Recursive Bayesian Decision Framework

    Full text link
    In this paper we propose a new method for the automatic detection and tracking of road traffic signs using an on-board single camera. This method aims to increase the reliability of the detections such that it can boost the performance of any traffic sign recognition scheme. The proposed approach exploits a combination of different features, such as color, appearance, and tracking information. This information is introduced into a recursive Bayesian decision framework, in which prior probabilities are dynamically adapted to tracking results. This decision scheme obtains a number of candidate regions in the image, according to their HS (Hue-Saturation). Finally, a Kalman filter with an adaptive noise tuning provides the required time and spatial coherence to the estimates. Results have shown that the proposed method achieves high detection rates in challenging scenarios, including illumination changes, rapid motion and significant perspective distortio

    Multi-Camera very wide baseline feature matching based on view-adaptive junction detection

    Full text link
    This paper presents a strategy for solving the feature matching problem in calibrated very wide-baseline camera settings. In this kind of settings, perspective distortion, depth discontinuities and occlusion represent enormous challenges. The proposed strategy addresses them by using geometrical information, specifically by exploiting epipolar-constraints. As a result it provides a sparse number of reliable feature points for which 3D position is accurately recovered. Special features known as junctions are used for robust matching. In particular, a strategy for refinement of junction end-point matching is proposed which enhances usual junction-based approaches. This allows to compute cross-correlation between perfectly aligned plane patches in both images, thus yielding better matching results. Evaluation of experimental results proves the effectiveness of the proposed algorithm in very wide-baseline environments

    Optical quantum random number generators: a comparative study

    Get PDF
    Quantum random number generators give the opportunity to, in theory, obtain completely unpredictable numbers only perturbed by the noise in the measurement. The obtained data can be digitalized and processed so that it gives as a result a uniform sequence of binary random numbers without any relation with the classical noise in the system. In this work we analyze the performance of optical QRNGs with three different arrangements: a homodyne detector measuring vacuum fluctuations, a homodyne detector measuring amplified spontaneous emission from an EDFA and a spontaneous emission phase noise-based generator. The raw data from the experiments is processed using a Toeplitz extractor, giving as a result sequences of binary numbers capable of passing the NIST Statistical Test Suite.Universidade de Vigo/CISU

    Evolution of polyphenolic compounds and sensory properties of wines obtained from grenache grapes treated by pulsed electric fields during aging in bottles and in oak barrels

    Get PDF
    The evolution of polyphenolic compounds and sensory properties of wines obtained from Grenache grapes, either untreated or treated with pulsed electric fields (PEF), in the course of bottle aging, as well as during oak aging followed by bottle aging, were compared. Immediately prior to aging in bottles or in barrels, enological parameters that depend on phenolic extraction during skin maceration were higher when grapes had been treated with PEF. In terms of color intensity, phenolic families, and individual phenols, the wine obtained with grapes treated by PEF followed an evolution similar to untreated control wine in the course of aging. Sensory analysis revealed that the application of a PEF treatment resulted in wines that are sensorially different: Panelists preferred wines obtained from grapes treated with PEF. Physicochemical and sensory analyses showed that grapes treated with PEF are suitable for obtaining wines that require aging in bottles or in oak barrels
    corecore