157 research outputs found

    Generator-Retriever-Generator: A Novel Approach to Open-domain Question Answering

    Full text link
    Open-domain question answering (QA) tasks usually require the retrieval of relevant information from a large corpus to generate accurate answers. We propose a novel approach called Generator-Retriever-Generator (GRG) that combines document retrieval techniques with a large language model (LLM), by first prompting the model to generate contextual documents based on a given question. In parallel, a dual-encoder network retrieves documents that are relevant to the question from an external corpus. The generated and retrieved documents are then passed to the second LLM, which generates the final answer. By combining document retrieval and LLM generation, our approach addresses the challenges of open-domain QA, such as generating informative and contextually relevant answers. GRG outperforms the state-of-the-art generate-then-read and retrieve-then-read pipelines (GENREAD and RFiD) improving their performance at least by +5.2, +4.2, and +1.6 on TriviaQA, NQ, and WebQ datasets, respectively. We provide code, datasets, and checkpoints \footnote{\url{https://github.com/abdoelsayed2016/GRG}

    Temporal Validity Change Prediction

    Full text link
    Temporal validity is an important property of text that is useful for many downstream applications, such as recommender systems, conversational AI, or story understanding. Existing benchmarking tasks often require models to identify the temporal validity duration of a single statement. However, in many cases, additional contextual information, such as sentences in a story or posts on a social media profile, can be collected from the available text stream. This contextual information may greatly alter the duration for which a statement is expected to be valid. We propose Temporal Validity Change Prediction, a natural language processing task benchmarking the capability of machine learning models to detect contextual statements that induce such change. We create a dataset consisting of temporal target statements sourced from Twitter and crowdsource sample context statements. We then benchmark a set of transformer-based language models on our dataset. Finally, we experiment with temporal validity duration prediction as an auxiliary task to improve the performance of the state-of-the-art model.Comment: 9 pages, 9 figures, 3 table

    Citation recommendation: approaches and datasets

    Get PDF
    Citation recommendation describes the task of recommending citations for a given text. Due to the overload of published scientific works in recent years on the one hand, and the need to cite the most appropriate publications when writing scientific texts on the other hand, citation recommendation has emerged as an important research topic. In recent years, several approaches and evaluation data sets have been presented. However, to the best of our knowledge, no literature survey has been conducted explicitly on citation recommendation. In this article, we give a thorough introduction to automatic citation recommendation research. We then present an overview of the approaches and data sets for citation recommendation and identify differences and commonalities using various dimensions. Last but not least, we shed light on the evaluation methods and outline general challenges in the evaluation and how to meet them. We restrict ourselves to citation recommendation for scientific publications, as this document type has been studied the most in this area. However, many of the observations and discussions included in this survey are also applicable to other types of text, such as news articles and encyclopedic articles

    Citation Recommendation: Approaches and Datasets

    Get PDF
    Citation recommendation describes the task of recommending citations for a given text. Due to the overload of published scientific works in recent years on the one hand, and the need to cite the most appropriate publications when writing scientific texts on the other hand, citation recommendation has emerged as an important research topic. In recent years, several approaches and evaluation data sets have been presented. However, to the best of our knowledge, no literature survey has been conducted explicitly on citation recommendation. In this article, we give a thorough introduction into automatic citation recommendation research. We then present an overview of the approaches and data sets for citation recommendation and identify differences and commonalities using various dimensions. Last but not least, we shed light on the evaluation methods, and outline general challenges in the evaluation and how to meet them. We restrict ourselves to citation recommendation for scientific publications, as this document type has been studied the most in this area. However, many of the observations and discussions included in this survey are also applicable to other types of text, such as news articles and encyclopedic articles.Comment: to be published in the International Journal on Digital Librarie

    Exploring the State of the Art in Legal QA Systems

    Full text link
    Answering questions related to the legal domain is a complex task, primarily due to the intricate nature and diverse range of legal document systems. Providing an accurate answer to a legal query typically necessitates specialized knowledge in the relevant domain, which makes this task all the more challenging, even for human experts. QA (Question answering systems) are designed to generate answers to questions asked in human languages. They use natural language processing to understand questions and search through information to find relevant answers. QA has various practical applications, including customer service, education, research, and cross-lingual communication. However, they face challenges such as improving natural language understanding and handling complex and ambiguous questions. Answering questions related to the legal domain is a complex task, primarily due to the intricate nature and diverse range of legal document systems. Providing an accurate answer to a legal query typically necessitates specialized knowledge in the relevant domain, which makes this task all the more challenging, even for human experts. At this time, there is a lack of surveys that discuss legal question answering. To address this problem, we provide a comprehensive survey that reviews 14 benchmark datasets for question-answering in the legal field as well as presents a comprehensive review of the state-of-the-art Legal Question Answering deep learning models. We cover the different architectures and techniques used in these studies and the performance and limitations of these models. Moreover, we have established a public GitHub repository where we regularly upload the most recent articles, open data, and source code. The repository is available at: \url{https://github.com/abdoelsayed2016/Legal-Question-Answering-Review}

    ScholarSight: Visualizing Temporal Trends of Scientific Concepts

    Get PDF
    2019 ACM/IEEE Joint Conference on Digital Libraries (JCDL): June 2 2019 to June 6 2019 Champaign, IL, USA.In this paper, we present a system for exploring the temporal trends of scientific concepts. Scientific concepts were captured by extracting noun phrases and entities from all computer science papers of arXiv.org. Our system allows users to review the time series of numerous concepts and to identify positively and negatively trending concepts. By applying clustering techniques and cluster analysis visualizations, it can also present concepts which share the same usage patterns over time. Our system can be beneficial for both ordinary researchers of any field and for researchers working in bibliometrics and scientometrics in order to investigate the evolution of scientific concepts

    Transformers and Language Models in Form Understanding: A Comprehensive Review of Scanned Document Analysis

    Full text link
    This paper presents a comprehensive survey of research works on the topic of form understanding in the context of scanned documents. We delve into recent advancements and breakthroughs in the field, highlighting the significance of language models and transformers in solving this challenging task. Our research methodology involves an in-depth analysis of popular documents and forms of understanding of trends over the last decade, enabling us to offer valuable insights into the evolution of this domain. Focusing on cutting-edge models, we showcase how transformers have propelled the field forward, revolutionizing form-understanding techniques. Our exploration includes an extensive examination of state-of-the-art language models designed to effectively tackle the complexities of noisy scanned documents. Furthermore, we present an overview of the latest and most relevant datasets, which serve as essential benchmarks for evaluating the performance of selected models. By comparing and contrasting the capabilities of these models, we aim to provide researchers and practitioners with useful guidance in choosing the most suitable solutions for their specific form understanding tasks
    • 

    corecore