1,205 research outputs found

    A novel FLEX supplemented QMC approach to the Hubbard model

    Get PDF
    This paper introduces a novel ansatz-based technique for solution of the Hubbard model over two length scales. Short range correlations are treated exactly using a dynamical cluster approximation QMC simulation, while longer-length-scale physics requiring larger cluster sizes is incorporated through the introduction of the fluctuation exchange (FLEX) approximation. The properties of the resulting hybrid scheme are examined, and the description of local moment formation is compared to exact results in 1D. The effects of electron-electron coupling and electron doping on the shape of the Fermi-surface are demonstrated in 2D. Causality is examined in both 1D and 2D. We find that the scheme is successful if QMC clusters of NC4N_C\ge 4 are used (with sufficiently high temperatures in 1D), however very small QMC clusters of NC=1N_C=1 lead to acausal results

    The Dynamical Cluster Approximation (DCA) versus the Cellular Dynamical Mean Field Theory (CDMFT) in strongly correlated electrons systems

    Full text link
    We are commenting on the article Phys. Rev. {\bf B 65}, 155112 (2002) by G. Biroli and G. Kotliar in which they make a comparison between two cluster techniques, the {\it Cellular Dynamical Mean Field Theory} (CDMFT) and the {\it Dynamical Cluster Approximation} (DCA). Based upon an incorrect implementation of the DCA technique in their work, they conclude that the CDMFT is a faster converging technique than the DCA. We present the correct DCA prescription for the particular model Hamiltonian studied in their article and conclude that the DCA, once implemented correctly, is a faster converging technique for the quantities averaged over the cluster. We also refer to their latest response to our comment where they argue that instead of averaging over the cluster, local observables should be calculated in the bulk of the cluster which indeed makes them converge much faster in the CDMFT than in the DCA. We however show that in their original work, the authors themselves use the cluster averaged quantities to draw their conclusions in favor of using the CDMFT over the DCA.Comment: Comment on Phys. Rev. B 65, 155112 (2002). 3 pages, 2 figure

    Protracted Screening in the Periodic Anderson Model

    Full text link
    The asymmetric infinite-dimensional periodic Anderson model is examined with a quantum Monte Carlo simulation. For small conduction band filling, we find a severe reduction in the Kondo scale, compared to the impurity value, as well as protracted spin screening consistent with some recent controversial photoemission experiments. The Kondo screening drives a ferromagnetic transition when the conduction band is quarter-filled and both the RKKY and superexchange favor antiferromagnetism. We also find RKKY-driven ferromagnetic and antiferromagnetic transitions.Comment: 5 pages, LaTeX and 4 PS figure

    The Bose-Hubbard model on a triangular lattice with diamond ring-exchange

    Get PDF
    Ring-exchange interactions have been proposed as a possible mechanism for a Bose-liquid phase at zero temperature, a phase that is compressible with no superfluidity. Using the Stochastic Green Function algorithm (SGF), we study the effect of these interactions for bosons on a two-dimensional triangular lattice. We show that the supersolid phase, that is known to exist in the ground state for a wide range of densities, is rapidly destroyed as the ring-exchange interactions are turned on. We establish the ground-state phase diagram of the system, which is characterized by the absence of the expected Bose-liquid phase.Comment: 6 pages, 10 figure
    corecore