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A novel FLEX supplemented QMC approach to the Hubbard model

J.P. Hague,1, 2 Mark Jarrell,1 and T.C.Schulthess2

1Department of Physics, University of Cincinnati
2Computer science and mathematics division, Oak Ridge National Laboratory

(Dated: May 13, 2009)

This paper introduces a novel ansatz-based technique for solution of the Hubbard model over two
length scales. Short range correlations are treated exactly using a dynamical cluster approximation
QMC simulation, while longer-length-scale physics requiring larger cluster sizes is incorporated
through the introduction of the fluctuation exchange (FLEX) approximation. The properties of the
resulting hybrid scheme are examined, and the description of local moment formation is compared
to exact results in 1D. The effects of electron-electron coupling and electron doping on the shape of
the Fermi-surface are demonstrated in 2D. Causality is examined in both 1D and 2D. We find that
the scheme is successful if QMC clusters of NC ≥ 4 are used (with sufficiently high temperatures
in 1D), however very small QMC clusters of NC = 1 lead to acausal results. [PUBLISHED AS:
Phys. Rev. B 69, 165113 (2004)]

PACS numbers: 71.10.Hf

I. INTRODUCTION

Despite its transparent meaning and simple form, the
Hubbard model is thought to contain much of the funda-
mental physics of correlated electron systems [1]. Since
its inception, the Hubbard model has been successfully
applied to the description of the Mott–Hubbard metal-
insulator transition, and is thought to contain a minimal
description of certain transition metal oxides, such as the
high-TC cuprates and the low-TC ruthenates. While lim-
iting aspects of the model are easily understood, the ex-
act ground state of the one-band Hubbard model remains
unknown for all cases other than the Hubbard chain [2].

Examination of the infinite-dimensional limit of the
Hubbard model using dynamical mean-field theory
(DMFT) has lead to a greater understanding of inter-
mediate coupling phenomena such as the Mott-Hubbard
metal-insulator transition [3]. DMFT maps the full lat-
tice problem onto a single impurity Anderson model,
which may be solved using various numerically exact
techniques such as quantum Monte-Carlo (QMC) [4] and
numerical renormalization group (NRG) [5]. In recent
work, the dynamical mean-field theory was extended to
study correlated electron systems in 2D, resulting in an
approach known as the dynamical cluster approximation
(DCA) [6]. DCA is a fully causal method, which system-
atically restores non-local corrections to the dynamical
mean-field theory. In previous work, Jarrell et al. com-
puted the phase diagram of the 2D Hubbard model for
small clusters of NC = 4 using QMC [7]. Unfortunately,
the QMC solution of large clusters is prohibitively expen-
sive in terms of super-computer time, while alternative
approaches, such as the perturbation-theory-based FLEX
approximation can be used to solve large DCA clusters,
but only in certain limits. FLEX is physically intu-
itive, concentrating on scattering from important mecha-
nisms (spin fluctuation, density fluctuation and particle-
particle pairs), and in the past, FLEX has been shown
to reproduce long-length-scale physics of the Hubbard

model such as the Mermin–Wagner theorem [8].
In this paper we present an ansatz for combining

long length scale information from the FLEX approxi-
mation with the QMC solution of the Hubbard model.
The two techniques are complimentary, since QMC pre-
dicts the correct short length scale physics, while FLEX
shows appropriate long length-scale behavior. In section
II, we introduce the DCA and the ansatz for the self-
energy, and provide technical details of the modified self-
consistent procedure for the incorporation of two-length-
scale physics. We examine issues of causality and appli-
cability in section III. In section IV we examine local
moment formation and the momentum dependent occu-
pation nk. Comparisons are made between the hybrid
technique introduced here, exact results for the 1D model
and the more traditional FLEX technique. We calculate
the Fermi surface of the 2D model in section V. Finally,
we discuss the applicability and outlook for the new tech-
nique in section VI

II. FORMALISM

The DCA extends the DMFT, which assumes that the
self-energy is constant across the Brillouin Zone (BZ),
by introducing a limited momentum dependence corre-
sponding to short range spatial fluctuations. This is
achieved by breaking up the Brillouin zone into a series
of subzones, within which it is assumed that the self-
energy is constant. This allows a momentum integrated
(or coarse grained) Green function to be defined in an
analogous manner to the definition of DMFT:

Ḡ(iωn,Ki) =
∑

k∈subzone

1

iωn + µ − ǫk − Σ(iωn,Ki)
(1)

The Ki are defined as in reference 6 as the mean mo-
mentum for a coarse grained cell. Via an inverse Dyson
equation, this leads to a “bare” Green function corre-
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sponding to the host of a cluster impurity problem,

Σ(K, iωn) = G−1
0 (K, iωn) − Ḡ−1(K, iωn) . (2)

which may be solved with a variety of methods. The
approximation has two well defined limiting cases. For
cluster sizes of 1, the DCA maps onto the DMFT. For
infinite subzones, the formalism is exact. For a finite
number of subzones, results are expected to be closer to
the behavior of the exact infinite lattice than conven-
tional finite size techniques, since an infinite number of
k-states is considered. The coarse graining over k-states
maps the lattice model to be studied (in this case the
Hubbard model) onto a periodic cluster in real space.

In order to solve the resulting problem, approximations

are employed. Two common cluster solvers are the FLEX
approximation [9], and the QMC method of Hirsch and
Fye [10, 11]. In principle, the QMC method gives the
exact solution of the cluster, but the numerical cost is
high, and only small clusters can be investigated. De-
tails of the QMC and FLEX methods may be found in
references 4 and 8 respectively.

In the hybrid technique proposed here, we define clus-
ters of two sizes, one large of size N ′

C solved with the
FLEX, and one small of size NC solved with QMC. For
the small cluster, coarse grained points are denoted K,
and for the large cluster, they are denoted as K′. In or-
der to couple the self energies from these methods, we
define an ansatz [? ]:

Σ(NC)(K, iωn) = Σ
(NC)
QMC(K, iωn) − Σ

(NC)
FLEX(K, iωn) + Σ̄

(N ′

C
)

FLEX(K, iωn) (3)

Σ(N ′

C
)(K′, iωn) = Σ̄

(NC)
QMC(K′, iωn) − Σ̄

(NC)
FLEX(K′, iωn) + Σ

(N ′

C
)

FLEX(K′, iωn) (4)

The superscripts indicate the size of the cluster. Bars
over the self energy indicate that a secondary coarse
graining of the lattice self energy (linear interpolated self
energy) from the other cluster size has been performed,
i.e.

Σ̄(K′, iωn) =
∑

k∈K′

Σ(k, iωn) (5)

where Σ(k, iωn) is the linear interpolation (lattice self-
energy) of the small cluster (an equivalent expression ex-
ists to coarse grain from the large to the small cluster).

The physical content of the ansatz can be clarified by
examining the diagrammatic expansion in figure 1. Since
the QMC self energy is non-perturbative, it contains com-
plete contributions from all orders in U for a cluster of
size NC (1st term). The second term removes all FLEX
contributions for cluster size NC . These are then replaced
with the FLEX contributions for the larger cluster size
N ′

C . This approach is reasonable if the set of FLEX dia-
grams have a stronger momentum dependence than the
remaining diagrams. The complete FLEX with particle-
particle scattering obeys the Mermin–Wagner theorem
in 2D, indicating a significant momentum dependence
which partially justifies this assumption.

As there are two length scales represented in the
ansatz, two coarse grainings and cluster exclusions are
performed consecutively (one for each length scale). The
cluster excluded Green function for the small cluster is
then used as input to the QMC, and the coarse grained
Green functions are used as input to the FLEX. This
leads to an iterative procedure which is demonstrated in
figure 2. There are some additional methods that can be

employed to aid convergence. The FLEX self-energy is
strongly damped between iterations to avoid the FLEX
instability, and many FLEX iterations ∼ 100 are carried
out for each QMC step (the ansatz is recomputed on
each sub-iteration of the FLEX). The QMC step is also
damped to a lesser degree.

III. RANGE OF APPLICABILITY

Causality is essential for any predictive theory. Causal-
ity violations in single-particle quantities can lead to neg-
ative parts of the single-particle spectrum and density of
states and violations of sum rules. Causality violations in
two-particle quantities can lead to erroneous predictions
for phase transitions. This section examines how causal-
ity problems can arise, the expected regions of applica-
bility for the new approximation, and tactics that may
be employed to avoid numerical instabilities. Causality
is reflected in the analytic properties of the self energy
and Green functions. For example, the retarded self en-
ergy Σ(k, ω) is analytic in the upper half of the complex
frequency plane and − 1

π
ImΣ(k, ω) > 0. Since there is

a subtraction in the ansatz for the self-energy, causal-
ity problems might be anticipated, since the imaginary
part of the real-frequency self-energy can become posi-
tive. Here, we search for causality violations in the Mat-
subara self energy. It is related to Σ(k, ω) through

Σ(k, iωn) =

∫
dω

− 1
π
ImΣ(k, ω)

iωn − ω
(6)
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FIG. 1: Feynman diagrams for the Hubbard model to 4th or-
der. Shaded diagrams are computed for a large cluster, while
the remaining diagrams are computed for the smaller clus-
ter. In our scheme, an infinite number of FLEX diagrams is
considered, and the remaining diagrams are calculated using
QMC, which is a non-perturbative method.

Coarse grainCoarse grain

FLEX

Map to
other cluster

Map to
other cluster

QMC FLEX

SOPTSOPT

(N)Σ (N’)Σ

Small cluster Large clusterAnsatz

FIG. 2: Flow chart showing the self-consistent procedure for
the ansatz. Iteration is initialized using second order per-
turbation theory (SOPT). The flow then continues with the
calculations for both cluster sizes, which are carried out con-
secutively. Once convergence is reached, analysis is carried
out on the results from the large cluster to compute quantities
of interest, such as the local moment and the Fermi-surface.
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FIG. 3: Self-energy ansatz by contribution, including the
QMC part for the small cluster (filled circles with solid lines),
the FLEX part for the small cluster (filled squares with solid
lines), the FLEX part for the large cluster (open squares with
dashed lines),and the combination of these into the ansatz for
the large cluster (open circles with dashed lines). U = 0.8W ,
T = 0.08, NC = 4, N ′

C = 32, D = 1, n = 0.5. For each of the
self-energy contributions, there are a number of curves repre-
senting the different contributions at each momentum point
as the Brillouin zone is crossed. Causality is preserved for
this value of U . FLEX overestimates the self-energy, while
QMC has the correct order of magnitude, but has insufficient
details of the momentum dependence. The ansatz corrects
the momentum dependence, while keeping the value of the
self-energy at the appropriate order of magnitude.

Consequently, −ωnImΣ(k, iωn) > 0 as a consequence of
causality. We employ violations of this inequality as a
sufficient but not necessary indication of the causality
violation of our formalism.

In figure 3, we examine the self-energy in 1D for
NC = 4, N ′

C = 32, U = 0.8W and T = 0.08 at half-filling.
All components of the ansatz are shown: The QMC self-
energy for the smaller cluster (filled circles), the FLEX
self-energy for the smaller cluster (filled squares) and the
FLEX self-energy for the larger cluster (open squares).
The result of the ansatz is also shown for the larger clus-
ter only (open circles). The combination of 1D lattice
and intermediate coupling results in an extreme test case
for the ansatz, and causality can be seen to hold for both
large and small clusters.

There are two ways in which causality may be violated.
The first relates to the nature of the ansatz. In order to
avoid overcounting of diagrams, FLEX diagrams on the
small length scale are subtracted before new diagrams
on a larger length scale are reinserted. Therefore, even
when the FLEX method gives causal results, the ansatz
may return a non-causal self energy. The FLEX parts
of the ansatz are designed to return the correct momen-
tum dependence to the self energy, and may be seen as a
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FIG. 4: Matsubara axis self energy calculated using FLEX.
The top panel shows the self-energy for U = W , D = 1 and
the bottom panel for U = 0.5W , D = 2. In both cases, the
result from large and small clusters are sufficiently close to
one another to avoid causality problems in the ansatz.

perturbation to the QMC segment of the self energy,

Σ(k) = ΣQMC + ∆Σ(k) (7)

In order to avoid causality problems resulting from the
subtraction of FLEX diagrams, small-length-scale clus-
ters should be as large as possible, with a minimum re-
quirement that NC > 1. The reason for this is clear
for very large QMC clusters, since in the limit that
NC → N ′

C , both FLEX solvers return the same results,
and ∆Σ(k) → 0 i.e. causality is guaranteed. For a good
cancellation of the FLEX terms, the small and large clus-
ter FLEX self-energies should both be on the large N
scaling curve. We demonstrate the scaling behavior of
the FLEX approximation in figure 4 (a pure FLEX cal-
culation is used). The imaginary part of the self-energy
from the FLEX approximation is shown. Both 1D and
2D calculations are carried out, and NC chosen to be
representative of cluster sizes used in this paper. For the
2D case, the NC = 4 self-energy doesn’t sit directly on

the scaling curve. However, it has the correct form to
promote causality since the extremal behavior is similar
to that of the large cluster. In general, for smaller U ,
less cluster points are needed to fall on the scaling curve
(with a minimum of NC = 4 for both 1D and 2D sys-
tems). For larger U > W , the minimum NC required to
see correct scaling behavior in the FLEX approximation
is expected to increase. We suggest that the use of the
ansatz should be limited to couplings that are no bigger
than the bandwidth.

If the self-energy contributions from the FLEX approx-
imation lie far away from the scaling curve, then the
magnitude of ∆Σ(k) can be as large as the QMC part.
FLEX inherently overestimates the magnitude of the self-
energy, so errors are expected to be amplified at strong
coupling. For this reason, use of the DMFT (NC = 1) as
a small cluster solver is not advised unless the tempera-
ture is high, or the coupling is weak.

Causality problems may also originate from the FLEX
instability. FLEX is constructed from a geometric se-
ries, which imposes a condition on the susceptibilities:
χpp(0, 0), χph(Q, 0) < 1. At very high temperatures,
both susceptibilities are small, and the geometric con-
dition is met. As temperature decreases, the suscepti-
bilities grow. In 1D and 2D, where the Mermin-Wagner
theorem holds, the FLEX instability should only cause
minor issues of numerical instability, since the suscepti-
bilities are never expected to diverge (N.B. Some numer-
ical effort is still required to avoid the instability). In
3D, however, FLEX predicts a phase transition at mod-
erate temperatures. Below that transition, the unbro-
ken symmetry approximation is neither causal nor valid.
Lower temperatures could only be accessed by extend-
ing the approximation to include the anomalous Green
functions associated with broken symmetry states. It is
unlikely that the Stoner criterion χph = 1 is meaningful
in the ansatz scheme, so there will be regions of the pa-
rameter space that cannot be reached in 3D. In order to
investigate the 3D phase diagram with this scheme, it is
essential that the FLEX instability occurs at lower tem-
peratures than the true phase transition. Alternatively a
large cluster solver such as 2nd order perturbation theory
could to be applied. The phase transition would be mea-
sured through the divergence of the relevant 2-particle
susceptibility. To calculate this quantity, it would be
necessary to introduce an additional ansatz for the irre-
ducible vertex function. This would be quite involved,
and is left for a future publication.

Finally, we note that FLEX (as an extension of the
T-matrix approximation) is exact for dilute systems, and
the ansatz is therefore expected to be exact in the region
of low doping. So long as reasonable temperatures are
maintained, results should be applicable to a wide range
of couplings and dopings. For dopings closer to half-
filling, the results of testing show the approximation to
be valid for couplings of up to the band width.
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FIG. 5: Comparison of the local moment calculated using
FLEX and the ansatz-based technique presented in this pa-
per against the exact Bethe-ansatz result. All schemes have
the same weak-coupling behavior. Although FLEX overesti-
mates the moment at strong coupling, the solution from our
ansatz shows promising results. Both the underestimation of
the moment that results from small cluster simulations, and
the overestimation inherent in the FLEX approximation are
corrected.

IV. 1D MODEL

In this section, the applicability of the hybrid
FLEX/QMC approach to the 1D Hubbard model is dis-
cussed. Since the exact ground state of the 1D case is
known from the Bethe ansatz solution [2], a quantitative
comparison of certain quantities is possible.

While the FLEX approximation predicts the correct
AFM transition temperature (the Mermin–Wagner the-
orem requires that there is only a transition at absolute
zero), it is well known that FLEX describes local mo-
ment formation incorrectly for couplings of the order of
the bandwidth. The fundamental definition of the local
moment is,

< µ >= S(S + 1) < (n↑ − n↓)
2 >=

3

4
(< n > −2 < D >)

(8)
where < D >=< n↑n↓ > is the expectation value of the
double occupancy. [? ] Since the potential energy term
of the Hubbard model is UD, < D > can be extracted
from the expectation value of the potential energy via,

< V >= Tr[Σ(K, iωn)G(K, iωn)] = U < D > (9)

Figure 5 shows the local moment versus coupling, cal-
culated using several different techniques (FLEX, the
ansatz-based FLEX/QMC technique presented in this
paper, and the exact ground state solution). There is a
difference in temperature between the exact Bethe-ansatz
solution of Lieb and Wu (T = 0) [2] and the approximate
solutions computed here (T = 0.16W ) [? ]. The temper-
ature is still low enough to see the non-trivial effects of
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FIG. 6: Self energy in 1D for various couplings. T = 0.08,
NC = 4, N ′

C = 32, D = 1, n = 0.5. Each set of curves
represents the variation of the self-energy across the Brillouin
zone. Note how the momentum dependence becomes more
pronounced as coupling increases. No causality problems are
found for couplings of similar size to the bandwidth.

spatial fluctuations. The hopping, t = 0.25, fixes the
the bandwidth of the non-interacting problem to unity
(therefore the interaction energy scale for the boundary
between weak and strong coupling regimes is U = 1).
Calculations are carried out for values of U up to the
bandwidth to examine behavior outside the perturbative
regime. The exact result for a 1D problem calculated
from the Bethe ansatz solution is shown, and compared
with the 4 site QMC, the FLEX solution for a cluster size
of NC = 32, and the hybrid FLEX/QMC scheme.

The results in figure 5 shows that all schemes have the
same weak coupling behavior. The gradient of the low
U curve increases with larger cluster size and decreased
temperature to converge on the Bethe-ansatz solution.
It can be seen that FLEX overestimates the moment at
strong coupling, i.e. it underestimates the double oc-
cupancy. Alternatively, results from the 4 site QMC
approximation are inclined to underestimate the local
moment at intermediate coupling, probably because the
mean-field nature of the NC = 4 DCA used here pre-
dicts a metal insulator transition at a critical coupling
U = UC , rather than at U = 0+ as expected in 1D. The
solution from the new ansatz shows promising results.
The moment has the same weak coupling behavior seen
in all the presented approximations. More importantly,
the overestimation of the moment that was predicted by
the FLEX approximation has been corrected. Remark-
ably, the new hybrid method predicts a moment that
closely follows the exact solution, and the mean-field like
behavior of the DCA is greatly reduced.

The self energy predicted by the hybrid scheme is
shown in figure 6. Calculations are also carried out for
the 1D system for a series of couplings. In this case, the
temperature is T = 0.08W . Groups of curves with sim-
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ilar asymptotic behavior belong to the same coupling,
and differ only by their location in the Brillouin zone.
As coupling increases, the self-energy gets larger, as ex-
pected. As compared to a conventional QMC calculation
with NC = 4, the self-energy has significantly more de-
tail, representing many more points in the Brillouin zone.
This momentum dependence is most important for inter-
mediate coupling results.

By examining the U = 0.8W result, the advantage
of the hybrid method over the traditional approach can
be seen. With a QMC calculation, a linear interpola-
tion would be used to extract the lattice self energy.
This would mean that all the self-energy curves would
be equidistant. In contract, the lines at the extremes
(which correspond to the center and edge of the Bril-
louin zone) are clearly much closer together. In fact, for
QMC cluster sizes up to NC = 6 in 1D, only extremal
behavior can be predicted, and therefore it is apparent
that the Hybrid scheme generates results which are much
closer to the true lattice self-energy.

V. 2D MODEL

An important quantity that can shed light on the
physics of correlated electron systems is the existence
and shape of the Fermi-surface. The Fermi-surface may
be used as input for a variety of other theoretical tech-
niques, and may be also be compared directly with re-
sults from experimental methods such as angle-resolved
photo-emission spectroscopy (ARPES) and de Haas van
Alphen measurements. In this section, we examine fea-
tures of the Fermi surface in 2D, by investigating the
momentum-dependent electron density across the Bril-
louin zone. The form of this quantity is closely connected
to the shape of the Fermi-surface.

The momentum dependent electron occupation may be
calculated using the following formula,

nk = T
∑

n

G(k, iωn) exp(iωn0+) (10)

where the lattice Green function has been constructed
from the linear interpolation of the large cluster self-
energy. The magnitude of the gradient of this quantity
|∇nk| is related to the Fermi-surface, since the gradient
is largest at the Fermi-surface.

The calculations in this section are performed at T =
0.04 with coupling U = 2.0 = W . An NC = 4 QMC
cluster is used throughout. 48 time slices were used for
the Trotter decomposition of the QMC cluster. The 2D
model has a simple cubic tight-binding dispersion with
tx = ty = 0.25 and a small interplane hopping tz = 0.005
to stabilize the solution. The Fermi-surface has been
computed using the hybrid scheme for a series of fillings
and large cluster sizes.

One of the underlying aims of the hybrid scheme is
to predict features consistent with very large systems,
without the need for expensive QMC simulations. We
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FIG. 7: Variation of the Fermi-surface, |∇n(k)| with cluster
size. Calculations are performed with U = 2, T = 0.04, µ =
0.075 and (a) N ′

C = 4, (b) N ′

C = 16 and (c) N ′

C = 256.
Larger cluster sizes lead to a more well defined surface, with
a more electron-like character (see c). Contours are spaced
every ∆|∇n(k)| = 0.05.

first investigate the variation in |∇nk| as the cluster size
is increased from N ′

C = 4 to N ′
C = 256, when the chem-

ical potential is set to µ = 0.075 corresponding to a 2D
Hubbard model just away from half-filling. The results
of these calculations are shown in figure 7. As cluster size
is increased, |∇nk| becomes sharper and better defined.
Also a small number of finer features emerges. Although
N ′

C = 64 is not shown, we note that the N ′
c = 64 cluster is
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FIG. 8: Evolution of the Fermi-surface in 2D, |∇n(k)|, for var-
ious fillings calculated using the hybrid FLEX/QMC scheme.
All calculations are performed with U = 2 = W , T = 0.04,
Nc = 4 and N ′

C = 256. Values of the chemical potential are
(a) µ = 0.025, (b) µ = 0.1 and (c) µ = 0.25. For values
of filling close to half-filling, no Fermi-surface is seen, with
a very diffuse gradient to the momentum dependent electron
density. (b) shows an interim value, where the Fermi-surface
begins to form as the edge of the gap is reached. It can be
seen that the central peak develops greater intensity, and the
beginnings of a curved Fermi-surface can be seen close to the
(π/2, π/2) point. Finally in (c) a clearly defined Fermi sur-
face is seen, with significant additional intensity. Contours
are spaced every ∆|∇n(k)| = 0.05
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FIG. 9: Evolution of the filling, < n >, with chemical poten-
tial, µ. The signature of a gapped state can be seen at low
chemical potentials, with no variation of filling as chemical
potential is increased. A gap of at least 0.05W can be seen
(W = 2 in this case). The three larger points correspond to
the chemical potentials chosen in figure 8. The line is a guide
to the eye.

close to convergence, with only small differences between
N ′

C = 64 and N ′
C = 256. The larger cluster seems signif-

icantly more electron- than hole-like, indicating that the
band-gap inherent at half filling has become slightly nar-
rower, although the diffuse nature of the surface indicates
that the system is not in a Fermi-liquid state (this is to
be expected close to half-filling, since there are significant
spin-fluctuations).

An aspect of the 2D Hubbard model that is of general
interest is the evolution of the Fermi-surface as filling is
changed. In a dilute system, the Hubbard model is well
described by the T-matrix approximation, which predicts
Fermi-liquid behavior. At the other extreme, the half-
filled system has a metal-insulator transition, with strong
spin-fluctuations due to the proximity of a phase tran-
sition to the anti-ferromagnetic state at absolute zero.
Also, non-Fermi-liquid pseudogapped behavior has been
reported for the 2D Hubbard model a little off half filling.

In figure 8, |∇nk| is shown for the NC = 4, N ′
C = 256

scheme. The results are computed for a fixed U and
temperature value, and only the filling is varied. Rep-
resentative graphs are shown to demonstrate the gapped
state, the movement between gapped and metallic states,
and the beginnings of the Fermi-surface.

When close to half of the electronic states are occu-
pied < n >= 1.0 (see the result for µ = 0.025), |∇nk|
is quite disperse, with available electronic states across
the Brillouin zone, and no clearly defined maximum as-
sociated with a Fermi-surface. As filling is increased to
< n >= 1.002 (µ = 0.1), the Fermi-surface becomes bet-
ter defined, and some curvature due to free electrons is
evident. For larger fillings, < n >= 1.02 (µ = 0.25), the
beginnings of an electronic Fermi-surface are evident. In
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addition to the electron-like states, an unusual hole-like
surface can be seen. This is smaller in magnitude than
the maximum corresponding to the electronic states, but
it persists into the metallic state.

In order to quantify the transition between gapped and
metallic states, the expectation value of the occupation,
< n >, has been calculated as a function of the chemical
potential, µ. The results are shown in figure 9. For
chemical potentials of up to the order of µ = 0.1, the
filling does not vary, sitting at < n >= 1.0 or half-filling
(there is a slight error due to the QMC algorithm). This
indicates the presence of a gap which is approximately 5%
of the band width. Once the metallic regime is reached,
the filling doesn’t vary very quickly, which suggests that
there are very few states close to the Fermi-energy. This
may be an indication of pseudogapped behavior.

VI. CONCLUSIONS

We have introduced a new technique for the simula-
tion of the Hubbard model. In this technique, short
length-scale fluctuations are treated using QMC tech-
niques, and the solution is supplemented with long length
scale physics from the FLEX approximation.

We have demonstrated that the new technique is suc-
cessful at simulating the Hubbard model in 1D and 2D,
provided that the QMC cluster is sufficiently large. In
particular, we find that results for the 1D Hubbard model
at low temperatures are very close to the exact Bethe
ansatz solution. The new hybrid method works well for

couplings up to the order of the band-width. This is im-
portant, since spatial fluctuations on all length scales are
expected to make a major contribution to the physics of
the 1D model. It is therefore expected that the hybrid
QMC/FLEX calculations will give important insight into
the 1D problem, while remaining numerically cheap. In
2D, the ansatz has been applied to the calculation of the
Fermi-surface. We demonstrate that very large clusters
of N ′

C = 256 can be simulated. For coupling of the order
of the band-width, we demonstrate the evolution from
insulating to metallic behavior.

The new technique is important from two view points.
First, QMC simulation of large clusters is very expensive,
with computing time growing quickly with cluster size.
Therefore, any improvement on the convergence proper-
ties of the DCA method will aid in the accurate simula-
tion of lattice models. Second, it has been proposed that
a similar technique be used to combine DMFT with the
ab-initio GW approximation [12]. In fact the two cluster
solver approach is quite general, and it is expected that
other models could be accurately treated using similar
techniques.
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