95 research outputs found

    Jun N-terminal kinase 1 regulates epithelial-to-mesenchymal transition induced by TGF-beta1

    Get PDF
    Transforming growth factor beta1 (TGF-beta1) is a cardinal cytokine in the pathogenesis of airway remodeling, and promotes epithelial-to-mesenchymal transition (EMT). As a molecular interaction between TGF-beta1 and Jun N-terminal kinase (JNK) has been demonstrated, the goal of this study was to elucidate whether JNK plays a role in TGF-beta1-induced EMT. Primary cultures of mouse tracheal epithelial cells (MTEC) from wild-type, JNK1-/- or JNK2-/- mice were comparatively evaluated for their ability to undergo EMT in response to TGF-beta1. Wild-type MTEC exposed to TGF-beta1 demonstrated a prominent induction of mesenchymal mediators and a loss of epithelial markers, in conjunction with a loss of trans-epithelial resistance (TER). Significantly, TGF-beta1-mediated EMT was markedly blunted in epithelial cells lacking JNK1, while JNK2-/- MTEC underwent EMT in response to TGF-beta1 in a similar way to wild-type cells. Although Smad2/3 phosphorylation and nuclear localization of Smad4 were similar in JNK1-/- MTEC in response to TGF-beta1, Smad DNA-binding activity was diminished. Gene expression profiling demonstrated a global suppression of TGF-beta1-modulated genes, including regulators of EMT in JNK1-/- MTEC, in comparison with wild-type cells. In aggregate, these results illuminate the novel role of airway epithelial-dependent JNK1 activation in EMT

    Redox amplification of apoptosis by caspase-dependent cleavage of glutaredoxin 1 and S-glutathionylation of Fas

    Get PDF
    Reactive oxygen species (ROS) increase ligation of Fas (CD95), a receptor important for regulation of programmed cell death. Glutathionylation of reactive cysteines represents an oxidative modification that can be reversed by glutaredoxins (Grxs). The goal of this study was to determine whether Fas is redox regulated under physiological conditions. In this study, we demonstrate that stimulation with Fas ligand (FasL) induces S-glutathionylation of Fas at cysteine 294 independently of nicotinamide adenine dinucleotide phosphate reduced oxidase–induced ROS. Instead, Fas is S-glutathionylated after caspase-dependent degradation of Grx1, increasing subsequent caspase activation and apoptosis. Conversely, overexpression of Grx1 attenuates S-glutathionylation of Fas and partially protects against FasL-induced apoptosis. Redox-mediated Fas modification promotes its aggregation and recruitment into lipid rafts and enhances binding of FasL. As a result, death-inducing signaling complex formation is also increased, and subsequent activation of caspase-8 and -3 is augmented. These results define a novel redox-based mechanism to propagate Fas-dependent apoptosis

    Attenuation of lung fibrosis in mice with a clinically relevant inhibitor of glutathione-S-transferase π

    Get PDF
    Idiopathic pulmonary fibrosis (IPF) is a debilitating lung disease characterized by excessive collagen production and fibrogenesis. Apoptosis in lung epithelial cells is critical in IPF pathogenesis, as heightened loss of these cells promotes fibroblast activation and remodeling. Changes in glutathione redox status have been reported in IPF patients. S-glutathionylation, the conjugation of glutathione to reactive cysteines, is catalyzed in part by glutathione-S-transferase π (GSTP). To date, no published information exists linking GSTP and IPF to our knowledge. We hypothesized that GSTP mediates lung fibrogenesis in part through FAS S-glutathionylation, a critical event in epithelial cell apoptosis. Our results demonstrate that GSTP immunoreactivity is increased in the lungs of IPF patients, notably within type II epithelial cells. The FAS-GSTP interaction was also increased in IPF lungs. Bleomycin- and AdTGFβ-induced increases in collagen content, α-SMA, FAS S-glutathionylation, and total protein S-glutathionylation were strongly attenuated in Gstp(–/–) mice. Oropharyngeal administration of the GSTP inhibitor, TLK117, at a time when fibrosis was already apparent, attenuated bleomycin- and AdTGFβ-induced remodeling, α-SMA, caspase activation, FAS S-glutathionylation, and total protein S-glutathionylation. GSTP is an important driver of protein S-glutathionylation and lung fibrosis, and GSTP inhibition via the airways may be a novel therapeutic strategy for the treatment of IPF

    Rust never sleeps: the continuing story of the Iron Bolt

    Get PDF
    Since 1981, Gordon Research Conferences have been held on the topic of Oxygen Radicals on a biennial basis, to highlight and discuss the latest cutting edge research in this area. Since the first meeting, one special feature of this conference has been the awarding of the so-called Iron Bolt, an award that started in jest but has gained increasing reputation over the years. Since no written documentation exists for this Iron Bolt award, this perspective serves to overview the history of this unusual award, and highlights various experiences of previous winners of this “prestigious” award and other interesting anecdotes

    Glutathione-S-transferase P promotes glycolysis in asthma in association with oxidation of pyruvate kinase M2

    Get PDF
    Background: Interleukin-1-dependent increases in glycolysis promote allergic airways disease in mice and disruption of pyruvate kinase M2 (PKM2) activity is critical herein. Glutathione-S-transferase P (GSTP) has been implicated in asthma pathogenesis and regulates the oxidation state of proteins via S-glutathionylation. We addressed whether GSTP-dependent S-glutathionylation promotes allergic airways disease by promoting glycolytic reprogramming and whether it involves the disruption of PKM2. Methods: We used house dust mite (HDM) or interleukin-1β in C57BL6/NJ WT or mice that lack GSTP. Airway basal cells were stimulated with interleukin-1β and the selective GSTP inhibitor, TLK199. GSTP and PKM2 were evaluated in sputum samples of asthmatics and healthy controls and incorporated analysis of the U-BIOPRED severe asthma cohort database. Results: Ablation of Gstp decreased total S-glutathionylation and attenuated HDM-induced allergic airways disease and interleukin-1β-mediated inflammation. Gstp deletion or inhibition by TLK199 decreased the interleukin-1β-stimulated secretion of pro-inflammatory mediators and lactate by epithelial cells. 13C-glucose metabolomics showed decreased glycolysis flux at the pyruvate kinase step in response to TLK199. GSTP and PKM2 levels were increased in BAL of HDM-exposed mice as well as in sputum of asthmatics compared to controls. Sputum proteomics and transcriptomics revealed strong correlations between GSTP, PKM2, and the glycolysis pathway in asthma. Conclusions: GSTP contributes to the pathogenesis of allergic airways disease in association with enhanced glycolysis and oxidative disruption of PKM2. Our findings also suggest a PKM2-GSTP-glycolysis signature in asthma that is associated with severe disease

    Differential Requirement for c-Jun N-terminal Kinase 1 in Lung Inflammation and Host Defense

    Get PDF
    The c-Jun N-terminal kinase (JNK) - 1 pathway has been implicated in the cellular response to stress in many tissues and models. JNK1 is known to play a role in a variety of signaling cascades, including those involved in lung disease pathogenesis. Recently, a role for JNK1 signaling in immune cell function has emerged. The goal of the present study was to determine the role of JNK1 in host defense against both bacterial and viral pneumonia, as well as the impact of JNK1 signaling on IL-17 mediated immunity. Wild type (WT) and JNK1 −/− mice were challenged with Escherichia coli, Staphylococcus aureus, or Influenza A. In addition, WT and JNK1 −/− mice and epithelial cells were stimulated with IL-17A. The impact of JNK1 deletion on pathogen clearance, inflammation, and histopathology was assessed. JNK1 was required for clearance of E. coli, inflammatory cell recruitment, and cytokine production. Interestingly, JNK1 deletion had only a small impact on the host response to S. aureus. JNK1 −/− mice had decreased Influenza A burden in viral pneumonia, yet displayed worsened morbidity. Finally, JNK1 was required for IL-17A mediated induction of inflammatory cytokines and antimicrobial peptides both in epithelial cells and the lung. These data identify JNK1 as an important signaling molecule in host defense and demonstrate a pathogen specific role in disease. Manipulation of the JNK1 pathway may represent a novel therapeutic target in pneumonia

    <i>S</i>-Glutathionylation-Controlled Apoptosis of Lung Epithelial Cells; Potential Implications for Lung Fibrosis

    No full text
    Glutathione (GSH), a major antioxidant in mammalian cells, regulates several vital cellular processes, such as nutrient metabolism, protein synthesis, and immune responses. In addition to its role in antioxidant defense, GSH controls biological processes through its conjugation to reactive protein cysteines in a post-translational modification known as protein S-glutathionylation (PSSG). PSSG has recently been implicated in the pathogenesis of multiple diseases including idiopathic pulmonary fibrosis (IPF). Hallmarks of IPF include repeated injury to the alveolar epithelium with aberrant tissue repair, epithelial cell apoptosis and fibroblast resistance to apoptosis, and the accumulation of extracellular matrix and distortion of normal lung architecture. Several studies have linked oxidative stress and PSSG to the development and progression of IPF. Additionally, it has been suggested that the loss of epithelial cell homeostasis and increased apoptosis, accompanied by the release of various metabolites, creates a vicious cycle that aggravates disease progression. In this short review, we highlight some recent studies that link PSSG to epithelial cell apoptosis and highlight the potential implication of metabolites secreted by apoptotic cells

    Arginase Modulates NF-κB Activity via a Nitric Oxide–Dependent Mechanism

    No full text
    NF-κB is a versatile transcription factor that regulates a wide array of processes, including inflammation and survival, and plays a critical role in the etiology of inflammatory lung diseases. Nitric oxide (NO) has been suggested to play an antiinflammatory role through S-nitrosation of components of NF-κB pathway. NO production can be modulated by changing the availability of its substrate, L-arginine. Arginases compete with NO synthases (NOSs) for their common substrate, L-arginine, and thereby have the potential to alter the signaling function of NO. The goal of the present study was to determine the impact of arginase manipulation on NO, and subsequent effects on NF-κB activation, in lung epithelial cells. Our results demonstrate that reduction of arginase activity enhanced cellular content of NO and S-nitrosated proteins, and resulted in decreases in TNF-α– or LPS-stimulated NF-κB DNA binding and transcriptional activity, in association with enhanced S-nitrosation of p50. The effects of arginase inhibition on NF-κB were reversed by the generic NOS inhibitor, N-ω-nitro-l-arginine methyl ester (l-NAME), suggesting a causal role for NO in the attenuation of NF-κB induced by arginase suppression. Conversely, overexpression of arginase I decreased cellular S-nitrosothiol content and enhanced IκB kinase activity and NF-κB DNA binding, and decreased S-nitrosation of p50. Collectively, our data point to a regulatory mechanism wherein NF-κB is controlled through arginase-dependent regulation of NO levels, which may impact on chronic inflammatory diseases that are accompanied by NF-κB activation and upregulation of arginases
    corecore