5,419 research outputs found

    Omnidirectional Sensory and Motor Volumes in Electric Fish

    Get PDF
    Active sensing organisms, such as bats, dolphins, and weakly electric fish, generate a 3-D space for active sensation by emitting self-generated energy into the environment. For a weakly electric fish, we demonstrate that the electrosensory space for prey detection has an unusual, omnidirectional shape. We compare this sensory volume with the animal's motor volume—the volume swept out by the body over selected time intervals and over the time it takes to come to a stop from typical hunting velocities. We find that the motor volume has a similar omnidirectional shape, which can be attributed to the fish's backward-swimming capabilities and body dynamics. We assessed the electrosensory space for prey detection by analyzing simulated changes in spiking activity of primary electrosensory afferents during empirically measured and synthetic prey capture trials. The animal's motor volume was reconstructed from video recordings of body motion during prey capture behavior. Our results suggest that in weakly electric fish, there is a close connection between the shape of the sensory and motor volumes. We consider three general spatial relationships between 3-D sensory and motor volumes in active and passive-sensing animals, and we examine hypotheses about these relationships in the context of the volumes we quantify for weakly electric fish. We propose that the ratio of the sensory volume to the motor volume provides insight into behavioral control strategies across all animals

    High-Altitude Air Mass Zero Calibration of Solar Cells

    Get PDF
    Air mass zero calibration of solar cells has been carried out for several years by NASA Glenn Research Center using a Lear-25 aircraft and Langley plots. The calibration flights are carried out during early fall and late winter when the tropopause is at the lowest altitude. Measurements are made starting at about 50,000 feet and continue down to the tropopause. A joint NASA/Wayne State University program called Suntracker is underway to explore the use of weather balloon and communication technologies to characterize solar cells at elevations up to about 100 kft. The balloon flights are low-cost and can be carried out any time of the year. AMO solar cell characterization employing the mountaintop, aircraft and balloon methods are reviewed. Results of cell characterization with the Suntracker are reported and compared with the NASA Glenn Research Center aircraft method

    Critical accounting policy and estimate disclosures: Company response to the evolving SEC guidance

    Get PDF
    In late 2001, soon after numerous financial reporting failures including the much publicized demise of Enron, the SEC began a series of initiatives to improve critical accounting policy (CAP) and critical accounting estimate disclosures included within the MD&A section of Form 10-K. The first announcement, in the form of cautionary guidance, was issued in December 2001. This was followed by a Proposed Rule in 2002, and additional disclosure guidance near the end of 2003. Combined, the guidance required companies to provide information that would help investors understand the impact of estimates, accounting policies and external factors on financial results. Through 2007, the SEC continued to provide guidance as to the content of CAP disclosures in the MD&A. In this study, we assess the extent to which companies responded to the initial CAP guidance, and determine the extent to which company disclosures changed with additional SEC guidance by analyzing CAP disclosures included in the 2001 and 2003 10-K filings for 112 of the Mid-Cap 400 companies. Our findings indicate that most, but not all, sampled companies included 2001 CAP disclosures consistent with the cautionary advice. We find that the disclosure content increased from 2001 to 2003, and that the disclosure quality also increased. However, some items remained underdisclosed in 2003, indicating that even after a 2-year period in which the SEC continued to provide additional guidance and reviewed company CAP disclosures, companies were not fully disclosing content identified as important by the SEC, particularly when the guidance was included in the Proposed Rule

    Letter

    Get PDF

    Defining Sickle Cell Disease Mortality Using a Population-Based Surveillance System, 2004 through 2008

    Get PDF
    Population-based surveillance data from California and Georgia for years 2004 through 2008 were linked to state death record files to determine the all-cause death rate among 12,143 patients identified with sickle cell disease (SCD)

    The Extrapolation of High Altitude Solar Cell I(V) Characteristics to AM0

    Get PDF
    The high altitude aircraft method has been used at NASA GRC since the early 1960's to calibrate solar cell short circuit current, ISC, to Air Mass Zero (AMO). This method extrapolates ISC to AM0 via the Langley plot method, a logarithmic extrapolation to 0 air mass, and includes corrections for the varying Earth-Sun distance to 1.0 AU and compensating for the non-uniform ozone distribution in the atmosphere. However, other characteristics of the solar cell I(V) curve do not extrapolate in the same way. Another approach is needed to extrapolate VOC and the maximum power point (PMAX) to AM0 illumination. As part of the high altitude aircraft method, VOC and PMAX can be obtained as ISC changes during the flight. These values can then the extrapolated, sometimes interpolated, to the ISC(AM0) value. This approach should be valid as long as the shape of the solar spectra in the stratosphere does not change too much from AMO. As a feasibility check, the results are compared to AMO I(V) curves obtained using the NASA GRC X25 based multi-source simulator. This paper investigates the approach on both multi-junction solar cells and sub-cells

    Efficient Derivation of Human Neuronal Progenitors and Neurons from Pluripotent Human Embryonic Stem Cells with Small Molecule Induction

    Get PDF
    There is a large unfulfilled need for a clinically-suitable human neuronal cell source for repair or regeneration of the damaged central nervous system (CNS) structure and circuitry in today's healthcare industry. Cell-based therapies hold great promise to restore the lost nerve tissue and function for CNS disorders. However, cell therapies based on CNS-derived neural stem cells have encountered supply restriction and difficulty to use in the clinical setting due to their limited expansion ability in culture and failing plasticity after extensive passaging1-3. Despite some beneficial outcomes, the CNS-derived human neural stem cells (hNSCs) appear to exert their therapeutic effects primarily by their non-neuronal progenies through producing trophic and neuroprotective molecules to rescue the endogenous cells1-3. Alternatively, pluripotent human embryonic stem cells (hESCs) proffer cures for a wide range of neurological disorders by supplying the diversity of human neuronal cell types in the developing CNS for regeneration1,4-7. However, how to channel the wide differentiation potential of pluripotent hESCs efficiently and predictably to a desired phenotype has been a major challenge for both developmental study and clinical translation. Conventional approaches rely on multi-lineage inclination of pluripotent cells through spontaneous germ layer differentiation, resulting in inefficient and uncontrollable lineage-commitment that is often followed by phenotypic heterogeneity and instability, hence, a high risk of tumorigenicity7-10. In addition, undefined foreign/animal biological supplements and/or feeders that have typically been used for the isolation, expansion, and differentiation of hESCs may make direct use of such cell-specialized grafts in patients problematic11-13. To overcome these obstacles, we have resolved the elements of a defined culture system necessary and sufficient for sustaining the epiblast pluripotence of hESCs, serving as a platform for de novo derivation of clinically-suitable hESCs and effectively directing such hESCs uniformly towards clinically-relevant lineages by small molecules14 (please see a schematic in Fig. 1). Retinoic acid (RA) does not induce neuronal differentiation of undifferentiated hESCs maintained on feeders1, 14. And unlike mouse ESCs, treating hESC-differentiated embryoid bodies (EBs) only slightly increases the low yield of neurons1, 14, 15. However, after screening a variety of small molecules and growth factors, we found that such defined conditions rendered retinoic acid (RA) sufficient to induce the specification of neuroectoderm direct from pluripotent hESCs that further progressed to neuroblasts that generated human neuronal progenitors and neurons in the developing CNS with high efficiency (Fig. 2). We defined conditions for induction of neuroblasts direct from pluripotent hESCs without an intervening multi-lineage embryoid body stage, enabling well-controlled efficient derivation of a large supply of human neuronal cells across the spectrum of developmental stages for cell-based therapeutics
    • …
    corecore